
Following the shocking and tragic loss of Professor Alessandro De
Vita in Oct 2018 I was asked to take over his second year lecture
course in Electromagnetism. I spent some time looking at the Col-
lege web pages of his course and I found some powerpoint slides
(possibly rather ancient), lots of problems and some screen cap-
tures of notes on his tablet. I knew from talking to him that his
preferred medium for lecturing is via his tablet which he connects
up to the data projector. (I remember his amazement at the Col-
lege’s incredulity that he wished to make this connection over the
wireless network—doubtless so that he could move freely around
the lecture theatre.) I realised that he was teaching the students
in the language of four-vectors, retarded potentials and Lagrangian
mechanics. I was told by students that his lectures were fluent and
often very wide ranging and I can believe that he was reluctant to
adhere to the very pedestrian syllabus laid down in the “Module
Description”. I also realised that I lack his unique brilliance to
carry this off. I recall from many conversations with Sandro that
his mind was ceaslessly and turbulently leaping from topic to topic
as he would turn over a question and explore connections across
all branches of physics to find viewpoints that would never occur
to me. So I decided to re-write the course from scratch. However
I found about three powerpoint slides which exposed for me his
oblique insight: these were about how to postulate a Lagrangian in
the electromagnetic field that is consistent with the Lorentz force.
He ended with a box on the third slide inspired by Feynman’s lec-
ture on the principle of least action. I decided to build a lecture
around these three slides and to add a section on how the vector
potential may in this way be allowed to enter the hamiltonian in
quantum mechanics which is outside the classical electromagnetism
but which I thought the students may find useful since they are also
studying quantum mechanics in another course.

I will not include this in the following years since I wished this to
be a unique reference to the students to a departed colleague, and
my tribute to Sandro De Vita.

Tony Paxton, 5 June 2019
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Hamiltonian and Lagrangian—equations of motion and potentials

After Professor Alessandro De Vita

1. Hamiltonian formulation of mechanics

The potential energy is usually defined in mechanics as a function, U(r), of position
only; that is to say that we address the case of a time-independent potential energy

function.† To begin with, we treat just a single particle moving in one dimension, so its
position is x, its velocity is ẋ and its acceleration is ẍ. The total energy, or Hamiltonian,
function for the particle is then defined by adding the kinetic energy,

H(x, ẋ) = K(ẋ) + U(x)

where

K =
1

2
mẋ2

and m is the mass of the particle. We impose the condition that the total energy is
conserved along the trajectory of the particle. This leads to

0 =
d

dt
H(x, ẋ) =

d

dt

(
1

2
mẋ2 + U(x)

)
(1)

How do we take such a derivative in general? Well, if we have a function of time, position

and velocity, f(x, ẋ, t) then, treating x, ẋ and t as independent variables,‡

d

dt
f(x, ẋ, t) =

(
ẋ
∂

∂x
+ ẍ

∂

∂ẋ
+

∂

∂t

)
f(x, ẋ, t) (2)

It follows that

d

dt
H(x, ẋ) = mẋẍ+

dU

dx
ẋ

=

(
mẍ+

dU

dx

)
ẋ = 0

† Try to think of some mechanical devices, e.g., a pendulum, for which the potential
energy is time-independent; and try to think of some which have a time dependent
potential, for example a charge being driven by an oscillating electric field.
‡ See I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engi-

neering, second edition (1968, McGraw Hill) chap. 5, sec. 4. If u = f(x1, x2 . . . xn) is a
function of n variables, then the total derivative is

du =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn

You use this all the time without remark in thermodynamics.
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expresses energy conservation; leading to the well-known equation of motion (Newton’s
second law),

F = mẍ (3)

where

F = −dU

dx

is a conservative force, namely the negative gradient of the potential energy. If I take it
that the linear momentum is p = mẋ then Newton’s second law is

F = ṗ

In words, “rate of change of momentum is force.” As long as forces are conservative as
in elementary classical mechanics and in electrostatics, this if fine; but it is insufficient
to describe the magnetic force, which is not conservative—meaning that it cannot be
derived from the gradient of a potential energy.

2. Lagrangian formulation of mechanics

The way to generalise the equation of motion is to introduce a function called the
Lagrangian, L(x, ẋ, t). The form of this function depends on the nature of the system
under study. In the case that we have considered above the Lagrangian is

L(x, ẋ, t) = K(ẋ)− U(x)

independent of time. Suppose we define the linear momentum as

p
def
=
∂L

∂ẋ
(4a)

and the Hamiltonian as†
H

def
=pẋ− L (4b)

We can immediately check consistency with (1) as follows.

p =
∂L

∂ẋ
=

∂

∂ẋ

(
1

2
mẋ2 − U(x)

)
= mẋ

† In three dimensions we’d generalise this to

p =
∂L

∂ṙ
; H = p · ṙ− L

or in index notation with the summation convention,

pi =
∂L

∂ẋi
; H = pkẋk − L
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as expected; and the Hamiltonian becomes

H = pẋ− L

= mẋẋ− 1

2
mẋ2 + U(x)

=
1

2
mẋ2 + U(x)

as expected. In conclusion, in “simple” systems we can define a Hamiltonian and a
momentum consistent with a Lagrangian

L(x, ẋ, t) = K(ẋ)− U(x)

3. Time-dependent potentials and energy conservation

Let us now examine energy conservation in the Lagrangian formulation of mechanics.
We start with the time variation of the Hamiltonian, using (4),

dH

dt
=

d

dt

(
∂L

∂ẋ
ẋ− L

)
= ẋ

d

dt

∂L

∂ẋ
+ ẍ

∂L

∂ẋ
− ẋ ∂L

∂x
− ẍ ∂L

∂ẋ
− ∂L

∂t

=

(
d

dt

∂L

∂ẋ
− ∂L

∂x

)
ẋ− ∂L

∂t
(5)

In the second line we used (2). We now address two cases.

1. The Lagrangian is not time-dependent. Energy conservation, Ḣ = 0, leads to,
using (5),

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (6)

This is called the Euler–Lagrange equation.

2. The Lagrangian is time-dependent. In this case the potential is time-dependent and
the correct equation of motion is

mẍ = −∂U(x, t)

∂x

while

L =
1

2
mẋ2 − U(x, t)

leads to

H =
1

2
mẋ2 + U(x, t)
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The rate of energy change along the particle’s trajectory is

dH

dt
=

d

dt

(
1

2
mẋ2 + U(x, t)

)
= mẋẍ+ ẋ

∂U

∂x
+
∂U

∂t

=

(
mẍ+

∂U

∂x

)
ẋ+

∂U

∂t

= −∂L
∂t
6= 0 (7)

because the two terms in large parentheses cancel by virtue of Newton’s second
law (3). So if I put this result,

dH

dt
= −∂L

∂t

into (5) then I recover
d

dt

∂L

∂ẋ
− ∂L

∂x
= 0

so the Euler–Lagrange equation applies also to the time-dependent case, even though
as (7) insists, energy is not conserved.

4. Electrodynamics and the Lorentz force

Experimentally, the force on a particle carrying charge, q, is the Lorentz force,

F = q (E + v ×B)

If B = 0 then the force is conservative and is given by −∇U(r, t) = −q∇V (r, t), where
V (r, t) is the electric potential. If B is present then the force depends on the velocity
of the particle as well as its position; so the force is non conservative and so cannot be
obtained as (minus) the gradient of a potential:

F 6= −∇U(r, t)

which means that

L 6= 1

2
mv2 − U(r, t)

We can show, however, that the Lorentz force can be derived from the Euler–Lagrange
equation by introducing a more general Lagrangian which includes both the scalar po-
tential, V (r, t), and a new term involving the vector potential A(r, t). If you like, we
postulate the Lagrangian

L =
1

2
mv2 − qV + qA · v

Or, in index notation using the summation convention,

L =
1

2
mẋkẋk − qV + qAkẋk
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and see where it takes us. Firstly, the ith-component of momentum is now

pi =
∂L

∂ẋi
= mẋi + qAi (8)

The three Euler–Lagrange equations are (i = 1 . . . 3),

0 =
d

dt

∂L

∂ẋi
− ∂L

∂xi

=
d

dt
(mẋi + qAi)−

∂

∂xi

(
1

2
mẋkẋk − qV + qAkẋk

)
= mẍi + q

dAi

dt
− q ∂

∂xi
(Akẋk − V ) (9)

Examine the term
dAi

dt

There are two reasons why the particle sees A to be changing with time: (i) the magnetic
field may itself be time-varying, and (ii) the particle is moving and the field may be
spatially varying. We must include both those possibilities by writing down

dA

dt
=
∂A

∂t
+
∂A

∂r
· ∂r

∂t
=
∂A

∂t
+ v · ∂A

∂r

This is the total, or “convective” derivative. In index notation using the summation
convention,

dAi

dt
=
∂Ai

∂t
+ ẋk

∂Ai

∂xk

And so (9) is

mẍi = q

(
−∂V
∂xi
− ∂Ai

∂t

)
+ q

(
−ẋk

∂Ai

∂xk
+ ẋk

∂Ak

∂xi

)
(10)

Now, because the electric field is

E = −∇V − ∂A

∂t
or, Ei = −∂V

∂xi
− ∂Ai

∂t

the first term in parentheses is obviously qEi. With a little thought you can convince
yourself that in the second parentheses two terms cancel and the remaining four are the
ith-component of v×∇×A = v×B. It therefore follows that (10) is nothing else but
the Lorentz force.

F = q (E + v ×B)
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5. The Hamiltonian in electric and magnetic fields

Now that we have a Lagrangian that is consistent with the Lorentz force we can construct
the Hamiltonian (4b)

H = piẋi − L

= piẋi −
1

2
mẋiẋi − qẋiAi + qV

=
1

2
mẋiẋi + qV

where in the last step I used (8). It makes sense. It’s kinetic plus potential energy; but I
want it in terms of the momentum and the vector and scalar potentials. So I note that,
using (8) again, (the summation convention will apply after expanding the parentheses)

1

2m
(pi − qAi) (pi − qAi) =

1

2
mẋiẋi

so I can write the Hamiltonian in this way,

H =
1

2m
(pi − qAi) (pi − qAi) + qV

=
1

2m
(p− qA)2 + qV

6. Magnetic field in quantum mechanics—the Zeeman effect

This is of particular importance in quantum mechanics when dealing with particles in
magnetic fields. As always, to quantise the classical Hamiltonian we make the canonical
substitution,

p→ −ih̄ ∂

∂x

or in three dimensions

pi → −ih̄
∂

∂xi
or p→ −ih̄∇

and we respect the canonical commutation rules. So the Hamiltonian operator for a
quantum particle in electric and magnetic fields is

Ĥ =
1

2m
(−ih̄∇− qA)2 + qV

= − h̄2

2m
∇2 +

ih̄q

2m
(∇ ·A + A ·∇) +

q2

2m
A2 + qV

Be a bit careful over A · ∇. Ĥ is an operator and this particular term displays its
nakedness. It needs to act on a function; then you can see how the next step works. For
any arbitrary function ψ, using the differentiation of a product rule,

∇ · (Aψ) = ψ∇ ·A + A · (∇ψ)
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In the Lorenz gauge

∇ ·A +
1

c2
dV

dt
= 0

and so

∇ · (Aψ) = A · (∇ψ)− ψ 1

c2
dV

dt

Since ψ is arbitrary we may interpret this as an operator identity in the Lorenz gauge,

∇ ·A = A ·∇− 1

c2
dV

dt

and this casts the Hamiltonian into the following form,

Ĥ = − h̄2

2m
∇2 +

ih̄q

m
A ·∇ +

q2

2m
A2 + qV − ih̄q

2mc2
dV

dt

In the absence of an electric field and in a weak magnetic field for which A2 may be
neglected, only the first two terms survive.

Ĥ = − h̄2

2m
∇2 +

ih̄q

m
A ·∇

contains just the standard quantum kinetic energy operator and an operator that de-
scribes the Zeeman shift of the energy of an electron in a weak, uniform, static magnetic
field chosen along the z-direction. The electron has charge −e and mass me and the

Zeeman term in the Hamiltonian is†

− ih̄e
me

A ·∇ = − eB

2me

ih̄

(
−y ∂

∂x
+ x

∂

∂y

)
=

eB

2me

ˆ̀
z

where B is the magnetic field and

ˆ̀
z = −ih̄ ∂

∂φ

is the orbital angular momentum operator with φ the azimuthal angle. The eigenvalue
of ˆ̀

z is h̄ times the “magnetic quantum number”, m`, and the Zeeman energy shift is

eh̄

2me

m`B

You may draw the analogy of the energy of a magnetic dipole in a magnetic field,
which is −µB where µ is the dipole moment. Then the electron is acting as if it had a
z-component of magnetic moment

µ = −
(
eh̄

2me

)
m`

† To get B = (0, 0, B) we need Ax = −yB/2, Ay = xB/2 and Az = 0.
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The collection of fundamental constants in the parenthesis is called the Bohr magneton
µB and is the standard unit of magnetic dipole moment of elementary particles. (See
J. M. Cassels, Basic Quantum Mechanics, second edition (1982, Macmillan), section 20.)
Please note, that we are dealing here with the orbital magnetic moment of the electron;
we are picturing the electron in a hydrogen atom, in orbit about a proton, whose energy is
shifted by the magnetic field through the interaction of the magnetic moment associated
with its circular motion and the external field. In fact in this case the classical picture
turns out to be correct: if you pretend that the circulating electron amounts to a loop of
current then you find that the gyromagnetic ratio is classical. This situation definitely
does not hold in relation to the electron’s spin magnetic moment—its gyromagnetic ratio
is ever so slightly larger, and significantly not exactly, twice the classical value.

7. Action and Feynman’s path integral formulation

The Lagrangian may be used to define an “action integral” for a particle moving in one
dimension,

S =

∫ t2

t1

L (x(t), ẋ(t)) dt (11)

where we assume that the Lagrangian function is itself time-independent. We do a
functional minimisation of the action, meaning that we require the first order variation
of S to vanish:

0 = δS =

∫ t2

t1

(
∂L

∂x
δx+

∂L

∂ẋ
δẋ

)
dt (12)

Here we are imagining that the particle follows some trajectory in space and time, under
the constraint that is starts out at x = x1 at t = t1 and ends up at x = x2 at t = t2. In
between those fixed points the function δx(t), everywhere small, is the variation from a
given trajectory, x(t); and which is zero at the extremes as fixed by the constraint,

δx(t1) = δx(t2) = 0 (13)

Note also that

δẋ(t) =
d

dt
δx

We integrate (12) by parts, the boundary terms vanishing by virtue of (13),

0 = δS =

∫ t2

t1

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
δx(t) dt

and find that for δS to vanish for any choice of δx(t) requires that

∂L

∂x
− d

dt

∂L

∂ẋ
= 0

which is the Euler–Lagrange equation. In conclusion, the physically observed trajectory,
x(t), is the function that minimises (or more accurately, makes stationary) the action
integral (11). Professor De Vita writes,
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. . . there is something very deep in this. One could construct an am-
plitude exp(iS/h̄) for any possible trajectory x(t). Suppose the par-
ticle somehow “takes” all these paths, but they “interfere,” mean-
ing that you have to sum all the amplitudes to discover what the
particle actually does. Surely if the quantity h̄ is very small, only
the paths close to the one that makes S stationary will not cancel
out. The classical trajectory would emerge from this interference
in the limit where h̄ goes to zero. It turns out that quantum me-
chanics can be formulated in this “sum over paths” way, where h̄
is Planck’s constant [divided by 2π]. So the least action principle
and the classical trajectory emerge as a limit from quantum me-
chanics (for a brilliant discussion, see Feynman Lectures, Vol II,
chapter 19).

Here’s a quote from Freeman J. Dyson in a statement in 1980, as reported in Quantum
Reality: Beyond the New Physics, (1987) by Nick Herbert.

Thirty-one years ago [1949], Dick Feynman told me about his “sum
over histories” version of quantum mechanics. “The electron does
anything it likes,” he said. “It just goes in any direction at any
speed, forward or backward in time, however it likes, and then you
add up the amplitudes and it gives you the wave function.” I said
to him, “You’re crazy.” But he wasn’t.


