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Here are some notes from when I implemented the matrix elements for EELS and

XANES in the LMTO code. It’s mostly taken from Bethe and Roman, with many

enjoyable discussions with Tchavdar Todorov.



Notes on inelastic scattering of electrons (EELS)

1. Geometry and definitions
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The experimental set-up is shown in the figure. A narrow, collimated beam of electrons
in plane waves states with wavevector ki = kz ≡ k scatters at an atom at the origin. The
rate of scattering into the solid angle dΩ is measured by the detector at r. We will make
two assumptions:
1. The incident particle intensity is sufficiently low that they may be regarded as non

interacting, but not so low that the detector statistics are poor.
2. The incident particle velocity is greater than (Z/137)c, where Z is the atomic number

of the atom and c is the speed of light. This lower bound assures that the first Born
approximation is valid; ie, that we can use first order perturbation theory. To avoid
relativistic corrections we also have an upper bound of about 1

2
c on the velocity. This

restricts us to a rather narrow range of incident electron energies between 15Z2eV
and 60keV. However, the upper bound is not restrictive; it will turn out that the final
equation is also very nearly correct in the relativistic case.

The scattering by the atom is characterised by the scattering cross section, σ, which is
defined by the equations

σ =
∫

σ(θ,φ)dΩ (1.1)

and

σ(θ,φ) =
dσ
dΩ

=
I(θ,φ)
I0

. (1.2)

σ(θ,φ) is called the differential scattering cross section and equation (1.2) defines this in
terms of I0, the incident flux; and I(θ,φ), the number of particles per unit time, scattered
through the cone subtended by the detector at r.

2. The incident flux, I0

The incident flux can be calculated simply if we make assumption number 1. The equation
of continuity of a flux of quantum mechanical particles is

Ṗ (r, t) + ∇ · S(r, t) = 0,

where P is the particle probability density per unit volume:

P = ψ̄(r)ψ(r)
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and S is the probability current density (per unit time per unit area):

S =
h̄

2im

[

ψ̄∇ψ −
(

∇ψ̄
)

ψ
]

. (2.1)

Since we take our plane waves to be non interacting, we have

ψ(r) = Neiki·r = Neikz. (2.2)

Here N is a normalisation constant having units of [length]−3/2. Then, using (2.1) we get

I0 = S = N2 h̄k
m
. (2.3)

3. The transition probability, I(θ,φ); Fermi’s golden rule

At the atomic scale, we write I(θ,φ) = wi→f , which is the transition probability per unit
time from the initial state into the final state of the system (atom plus electron beam).
We can work out wi→f quite generally to first order, ie, in the first Born approximation, if
we write the hamiltonian, H , for the system as an unperturbed part, H0, plus a small per-
turbing part, H1, responsible for the transitions between stationary states, un(r1, r2 . . .),
which are eigenfunctions of H0, with eigenvalues En:

H0un = Enun.

The solutions, Ψ(r1, r2, . . . , t) of the Schrödinger equation

ih̄Ψ̇ =HΨ (3.1)

can be expanded in the stationary states of H0:

Ψ =
∑

n
anune−Ent/h̄.

Putting this into the Schrödinger equation (3.1), multiplying from the left by a particular
stationary state wavefunction uf and integrating dτ , ie, all spatial coordinates of the
electrons over all space, we obtain

ih̄ȧf (t) =
∑

n
H ′

fne
iωfntan(0), (3.2)

where
H ′

fn =
∫

dτ ūfH1un, (3.3)

and we have defined

ωfn =
1
h̄

(

Ef −En
)

. (3.4)

If the system is initially in the stationary state i, then

an(0) = δni,

and putting this into (3.2) and integrating, we get

af (t) = −
i
h̄

∫ t

−∞

H ′

fi e
iωfit

′

dt′.
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The constant of integration is zero, since af (−∞) = 0. If H ′ is independent of time except
that is it ‘switched on’ at t= 0 and ‘switched off’ at t, then

af (t) = −
H ′

fi

h̄
eiωfit − 1
ωfi

,

and
∣

∣

∣af (t)
∣

∣

∣

2
=

4

h̄2

∣

∣

∣H ′

fi

∣

∣

∣

2 sin2 1

2
ωfit

ω2
fi

. (3.5)

This is the probability of transition to state f over the duration t of the experiment. We
denote this Wi→f(t). For two reasons, we don’t yet have wi→f .
1. The final state is expected to be one of a continuum of states in the energy range

about Ef between Ef − 1

2
dE and Ef + 1

2
dE. The number of such states is ρ(E) dE and

ρ(E) is the density of states per unit energy.
2. We want the transition probability per unit time. However if we compute ρ(E)Wi→f/t

we get involved in details of how the interaction is ‘switched’ on and off. Furthermore
we want the states i and f to be sharp (ie, to have long lifetimes). Therefore what we
want to compute is

wi→f = lim
t→∞

1
t

∫ Ef+ 1
2
dE

Ef−
1
2
dE

Wi→f(t)ρ(E) dE. (3.6)

We now make a further assumption, namely that the density of states is a much more
slowly varying function of energy than Wi→f . We therefore take ρ(E) outside the integral
in (3.6), insert (3.5) for Wi→f to obtain

wi→f =
2π
h̄
ρ(E)

∣

∣

∣
H ′

fi

∣

∣

∣

2
lim
t→∞

1
h̄

∫ Ef+ 1
2
dE

Ef−
1
2
dE





2 sin2 1

2
ωfit

πω2
fi
t



dE. (3.7)

We next invoke the identity

lim
α→∞

sin2 xα
x2α

= πδ(x), (3.8)

and δ(ax) = (1/a)δ(x), to write, using (3.4)

lim
t→∞

1
h̄

∫ Ef+ 1
2
dE

Ef−
1
2
dE





2 sin2 1

2
ωfit

πω2
fi
t



dE =
∫ Ef+ 1

2
dE

Ef−
1
2
dE

δ(Ef −Ei) dE.

As long as Ei is in the range Ef − 1

2
dE to Ef + 1

2
dE, then this is numerically equal to one,

otherwise it is zero. This expresses the approximate energy conservation in first order
scattering. The actual range dE is determined by the uncertainty principle. Therefore
as long as Ei is within this range, the limit in (3.7) is one, and we get the very simple
expression,

wi→f =
2π
h̄
ρ(E)

∣

∣

∣H ′

fi

∣

∣

∣

2
, (3.9)

which is Fermi’s Golden Rule, actually due to Dirac. Note that we have not made the
one-electron approximation in the derivation, and (3.3) is an integration over all electron
coordinates.
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4. Elastic scattering

✰
✰✲✱ ✳ ✰✵✴✷✶✹✸✬✺✼✻✾✽

✿ ✽❀✺❂❁✵❃✥✸✬✺❂✻✮✽

Suppose a beam of independent electrons with energy E is scattered elastically by a
potential V (r) at the origin. The situation is illustrated in the figure. This is now a
one-electron problem.

We have

ui(r) =Neik·r (4.1a)

uf (r) =Nei(k−q)·r (4.1b)

q is the momentum transfer. In this case, from (3.3)

H ′

fi = N2
∫

drV (r) eiq·r ≡ N2M

and

wi→f =
2π
h̄

N4 ∣
∣M

∣

∣

2
ρ(E).

The number of independent electron states in the energy interval dE is, from the usual
elementary argument,

ρ(E)dE = N−2

(

k2dk

8π3

)

and using E = h̄2k2/2m, we get

ρ(E) = N−2

(

mk

8π3 h̄2

)

.

The differential cross section is then, using (2.3),

σ(θ,φ) =
wi→f
I0

=

(

m2

4π2 h̄4

)

∣

∣M
∣

∣

2
.

Here, (θ,φ) describes the direction of the scattered beam k − q, and M is the scattering
matrix element:

M(q) =
∫

drV (r) eiq·r.

The normalisation constant cancels, as it should, since it is an arbitrarily chosen volume
in the case of the scattering of an electron beam.
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5. Elastic and inelastic scattering from an isolated atom

We imagine an electron with incident wavevector ki and energy Eki
= h̄2k2

i /2m scattering

at an isolated atom. We proceed as in section 3 to solve the Schrödinger equation (3.1);
in which the hamiltonian now is

H =Hatom +Helectron +H1,

where

H1 = e2





Z
r

−
Z
∑

j=1

1
∣

∣

∣r− rj

∣

∣

∣



 .

This is the interaction hamiltonian between the incident electron, which is at position
r, and the atom whose nucleus is considered to be at rest at the origin. The second
term is the Coulomb interaction between the incident electron and the Z atomic electrons
at positions rj . The first term is the interaction with the nucleus; eventually this term
will drop out in the calculation of the inelastic cross section. The wavefunction is now
expanded in the eigenfunctions of Hatom +Helectron, which is H0 the hamiltonian for the
non interacting atom plus independent electron beam:

Ψ(r, r1, r2, . . . , t) =
∑

nk

an(k, t)ψn(r1, r2, . . . , rZ) eik·r e−i(En+Ek)t/h̄.

Here, an(k, t) is the expansion coefficent of the plane wave of wavevector k times the
eigenfunction ψn of Hatom which has eigenvalue En. Then in exactly the way we obtained
(3.2) we find

ih̄ȧf (kf , t) =
∑

nk

Tnf eiωfn an(k, t)

where, with q = k− kf ,

Tnf =
∫

eiq·r ψ̄fψnH1 drdτ,

and

ωfn =
1
h̄

[

(Ef + Ekf
) − (En + Ek)

]

.

Ef and Ekf
are the final state energies of the atom and electron. As before, we assert that

the atom is intially in a state i so that

an(k,0) = δni δkki
,

and the density of final states for the scattered electron beam is ρ(Ekf ). Exactly as before,

as long as the conservation rule is adhered to, namely

(Ef + Ekf
)− (Ei + Eki

) ≈ 0,

where Ei is the initial state energy of the atom, we arrive at the Golden Rule (3.9):

wi→f =
2π
h̄

∣

∣

∣Tif

∣

∣

∣

2
ρ(Ekf )

where

Tif = e2
∫

eiq·r ψ̄fψi





Z
r

−
Z
∑

j=1

1
∣

∣

∣r− rj

∣

∣

∣



 dr dτ.
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One can manipulate Tif into a simpler expression by first integrating over the incident
electron coordinate r. We note that

eiq·r = −
1
q2

∇2eiq·r,

so that

∫

eiq·r





Z
r

−
Z
∑

j=1

1
∣

∣

∣r− rj

∣

∣

∣



dr = −
1

q2

∫

eiq·r



∇2Z
r

−
Z
∑

j=1

∇2 1
∣

∣

∣r− rj

∣

∣

∣



dr

=
4π

q2

∫

eiq·r



Zδ(r)−
Z
∑

j=1

δ
(∣

∣

∣
r− rj

∣

∣

∣

)



dr

=
4π

q2



Z −
Z
∑

j=1

eiq·rj



 .

The first line follows after two integrations by parts with the surface terms vanishing. We
now have

Tif =
4πe2

q2

∫

ψ̄fψi



Z −
Z
∑

j=1

eiq·rj



dτ, (5.1)

and the cross section for scattering is, following the arguments in section 3,

σ(θ,φ) =

(

m2

4π2 h̄4

)

kf
ki

∣

∣

∣Tif

∣

∣

∣

2
.

Note that this depends, through (5.1) on q−4 as in the classical Rutherford formula for
scattering. It’s not hard to see that in the case of elastic scattering, where ψf = ψi (and

kf = ki),

Tif =
4πe2

q2
[Z −F (q)]

where
F (q) =

∫

ρ(r) eiq·r dr

is the Fourier transform of the atomic charge density, called the form factor. However
for inelastic scattering the final and initial states are distinct and orthogonal so the first
term in (5.1) integrates to zero. We therefore arrive at a central equation in these notes:
Bethe’s formula for the inelastic scattering differential cross section, †

σ(θ,φ) =

(

m2

4π2 h̄4

)

kf
ki

(

4πe2

q2

)2
∣

∣

∣

∣

∣

∣

∫

ψ̄fψi





Z
∑

j=1

eiq·rj



dr1dr2 . . .drZ

∣

∣

∣

∣

∣

∣

2

. (5.2)

† Actually Bethe derives a formula with relativistic corrections for the velocity of the incoming electron.
His prefactor is

(

m2

4π2h̄4

)

kf
ki

(

4πe2

q2

)2

=

(

2me2

h̄2q2

)2
kf
ki

→

(

2e2W

c2h̄2q2

)2
vf
vi

where vi and vf are initial and final electron velocities (and kf/ki = vf/vi) and W is the energy of the

incoming electron including its rest mass. In these notes we have kept to the non relativistic case both

for simplicity and because it turns out, as Bethe shows, that the final equation (5.4) is also relativistically

“very nearly” correct.
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Next we want to find the partial cross section with respect to the magnitude of momentum
transfer q rather than the scattering angles. To do this we first write (5.2) as

σ(θ,φ) =

(

m2

4π2 h̄4

)

kf
ki

(

4πe2

q2

)2
∣

∣

∣Ff (q)
∣

∣

∣

2

=

(

2me2

h̄2q2

)2 kf
ki

∣

∣

∣Ff (q)
∣

∣

∣

2

which defines the transition form factor Ff (q) for final state f . Then the cross section for

inelastic scattering into final state f is, from (1.2),

σf =

(

2me2

h̄2

)2 kf
ki

∫

dΩ

∣

∣

∣Ff (q)
∣

∣

∣

2

q4
. (5.3)

Now, q = ki − kf , q2 =
(

ki − kf
)2

+ 4kikf sin 1

2
θ; q dq = kikf sin θ dθ. Therefore

kf
ki

dΩ =
kf
ki

sin θ dθ dφ =
1

ki
2
q dq dφ.

Putting this into (5.3) and doing the integral over φ brings out a factor of 2π and we are
left with

σf = 2π

(

2e2

h̄vi

)2
∫

dq

∣

∣

∣Ff (q)
∣

∣

∣

2

q3
,

where

vi =
h̄ki
m

is the group velocity of the incident electron beam (or wavepacket). Finally we get

dσf
dq

=

(

8πe4

h̄2

)

1

v2
i

1

q3

∣

∣

∣Ff (q)
∣

∣

∣

2
. (5.4)

Equation (5.4) is also very nearly correct in the relativistic case vi >
1

2
c. It is the starting

point for our derivation of the EELS cross section, next.

6. Approximate formula for the differential cross section in EELS

Equation (5.4) is exact within the first Born approximation, but is as far as formal scat-
tering theory can take us. Indeed Roman remarks,

“Effects of target thickness, multiple scattering, cooperative phenomena in crys-
tals, thermal motion, etc., are considered as problems of instrumentation, out-
side the scope of the scattering theory proper.”

This seems rather dismissive of KKR band theory, for one; but that’s his view. Now in
EELS, as opposed to the scattering from an isolated atom, the final state f is one of a
continuum of band states labelled with a wavevector k and a band index n. (We no longer
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need k for the wavevector of the independent electron incoming and outgoing states, so
there should be no confusion in notation). If we want to know what is the differential
cross section with respect to momentum transfer for scattering into final states in the
energy range dE around some energy E then from (5.4) we can infer this to be

dσ(E,q)
dq

=
∑

nk

dσ(q)
dq

δ(E −Enk) dE,

and therefore the differential cross section with respect to both q and E is

d2σ(E,q)
dE dq

=
∑

nk

dσ(q)
dq

δ(E −Enk). (6.1)

We would like to insert (5.4) into this; but first we make two approximations. The first
is the one-electron approximation which reduces the multiconfigurational integral for the
transition form factor in (5.2) to

F
(1e)
nk

(q) =
∫

dr ϕ̄nk(r) eiq·r ϕc(r)

=
〈

nk
∣

∣

∣eiq·r
∣

∣

∣ c
〉

.

Here, ϕnk(r) =
〈

r | nk
〉

is the band final state and ϕc(r) = 〈r |c〉 is the core initial state.
We can remark here that the transition form factor can be written in this way as long
as the states ψf and ψi can be approximated as Slater determinants. Because of the
orthogonality of the orbitals, after taking the sum over j outside the integral, only one-
electron integrals survive. On the other hand moving from the exact formula (5.4) to its
one-electron approximation in this way removes all of the core-hole relaxation or “final
state” effects. Since these are clearly absent therefore in the Hartree–Fock approximation,
we can take these to be the consequence of electron correlations between the initial and
final states ψf and ψi, rather than correlations between the incoming electron and the

atomic states.† The only other possible origin of these effects is higher order scattering
terms beyond the first Born approximation.

The second is called the dipole approximation because the exponential is expanded to first
order as

eiq·r ≈ 1 + iq · r

and
〈

nk
∣

∣

∣eiq·r
∣

∣

∣c
〉

≈
〈

nk |iq · r|c
〉

= q
〈

nk
∣

∣îǫq · r
∣

∣c
〉

because the core state is orthogonal to the final state. Here, ε̂q is a unit vector in the
direction of q. The dipole approximation is admissible because of the q−4 dependence
of the differential cross section in (5.1). It leads to the well known dipole selection rules
arising from the matrix element

Md = i
〈

nk |r|c
〉

= i
∫

dr ϕ̄nk(r) r ϕc(r). (6.2)

† This last point can be made because whereas it is an approximation to write ψf and ψi as product

functions or Slater determinants, the many-body wavefunction is a product of ψn and a plane-wave state

in time-dependent perturbation theory.
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Using these approximations, we put (5.4) into (6.1) and get

d2σ(E,q)
dE dq

=





8πe4

h̄2v2
i





1
q

∑

nk

∣

∣

〈

nk
∣

∣ǫ̂q · r
∣

∣c
〉∣

∣

2
δ(E −Enk)

which is equation (4) in Muller, Singh and Silcox. If we average over all orientations of
q, which amounts to assuming specimen isotropy, then ǫ̂q · r averages to 1

3
r and we get,

using (6.2),

d2σ(E,q)
dE dq

=





8πe4

3h̄2v2
i q





∑

nk

∣

∣Md
∣

∣

2
δ(E −Enk)
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