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Institute for Advanced Simulation, Forschungszentrum Jülich,
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1 What is Tight Binding?

“Tight binding” has existed for many years as a convenient and transparent model for the
description of electronic structure in molecules and solids. It often provides the basis for
construction of many body theories such as the Hubbard modeland the Anderson impurity
model. Slater and Koster call it the tight binding or “Bloch”method and their historic
paper provides the systematic procedure for formulating a tight binding model.1 In their
paper you will find the famous “Slater–Koster” table that is used to build a tight binding
hamiltonian. This can also be found reproduced as table 20–1in Harrison’s book and
this reference is probably the best starting point for learning the tight binding method.2

Building a tight binding hamiltonian yourself, by hand, as in Harrison’s sections 3–C and
19–C is certainly the surest way to learn and understand the method. The rewards are very
great, as I shall attempt to persuade you now. More recent books are the ones by Sutton,3

Pettifor4 and Finnis.5 In my development here I will most closely follow Finnis. This is
because whereas in the earlier literature tight binding wasregarded as a simple empirical
scheme for the construction of hamiltonians by placing “atomic-like orbitals” at atomic
sites and allowing electrons to hop between these through the mediation of “hopping inte-
grals,” it was later realised that the tight binding approximation may be directly deduced as
a rigorous approximation to the density functional theory.This latter discovery has come
about largely through the work of Suttonet al.6 and Foulkes;7 and it is this approach that
is adopted in Finnis’ book from the outset.

In the context of atomistic simulation, it can be helpful to distinguish schemes for the
calculation of interatomic forces as “quantum mechanical,” and “non quantum mechani-
cal.” In the former falls clearly the local density approximation (LDA) to density functional
theory and nowadays it is indeed possible to make molecular dynamics calculations for
small numbers of atoms and a few picoseconds of time using theLDA. At the other end of
the scale, classical potentials may be used to simulate millions of atoms for some nanosec-
onds or more. I like to argue that tight binding is the simplest scheme that is genuinely
quantum mechanical. Although you will read claims that the “embedded atom method”
and other schemes are LDA-based, tight binding differs fromthese in that an explicit cal-
culation of the electronkinetic energyis attempted either by diagonalising a hamiltonian,
which is the subject of this lecture; or by finding its Green function matrix elements which
is the subject of the lecture by Ralf Drautz.8 The enormous advantage of the latter is that
calculations scale in the computer linearly with the numberof atoms, while diagonalisa-
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tion isO(N3). At all events, tight binding is really the cheapest and simplest model that
can capture the subtleties in bonding that are consequencesof the quantum mechanical
nature of the chemical bond. Some well-known examples of these quantum mechanical
features are magnetism, negative Cauchy pressures, chargetransfer and ionic bonding; and
of course bond breaking itself which is not allowed by simplemolecular mechanics mod-
els. At the same time tight binding will reveal detailed insight into the nature of the bonds
and origin of interatomic forces in the system you are studying.

1.1 The two centre approximation

In density functional calculations, the hamiltonian is constructed after making a choice of
functions used to represent the wavefunctions, charge density and potential. If these are
atom centred, for example gaussians, “fire balls” or Slater type orbitals rather than plane
waves, then matrix elements of the hamiltonian may become spatial integrals of three such
functions. An explicit formula taken from the LMTO method isdisplayed in equation (26)
in section 3.2 below. This can be the most time consuming partof a bandstructure calcula-
tion, compared to the subsequent diagonalisation. In the tight binding approximation, we
side step this procedure and construct the hamiltonian froma parameterised look up table.
But the underlying theory has the same structure. Each hamiltonian matrix element is con-
ceived as a integral of three functions, one potential and two orbitals centred at three sites.
(We have made theAnsatzthat the effective potential may be written as a sum of atom cen-
tred potentials.) If all are on the same site, this is a one centre, oron-sitematrix element; if
the orbitals are on different sites and are “neighbours” while the potential is on one of these
sites we have a two centre matrix element, or “hopping integral.” All other possibilities,
namely three centre terms and overlap of orbitals on distantsites are neglected. This forms
a central tenet of the tight binding approximation—the nearest neighbour, two centre ap-
proximation. The canonical band theory9 allows us to isolate these terms explicitly and to
predict under what circumstances these are indeed small (see section 3.2). The two centre
approximation is more than just a convenient rejection of certain terms; it is implicit in
the Slater–Koster table and in the calculation of interatomic force that the hamiltonian can
be written in parameterised two centre form. This allows oneto express the dependence
of hopping integrals upon distance analytically. It is a feature of the quantum mechanical
method that whereas the hamiltonian comprises short rangedtwo centre quantities only,
the solution of the Schrödinger equation using this simplehamiltonian results in a density
matrix that is possibly long ranged and includes many-atom interactions. Indeed the bond
order potential exposes this many-atom expansion of the total energy explicitly.8

1.2 O(N3) and O(N) implementations

The obvious way to tackle the tight binding electronic structure problem is the same as
in density functional theory, namely by direct diagonalisation of the hamiltonian to obtain
eigenvalues and eigenfunctions in the tight binding representation, section 2.1 below. This
scales in the computer as the third power of the number of orbitals in the molecule or in
the unit cell. In the solid state case one employs the Bloch theorem.10 This means that one
retains only the number of atoms in the primitive unit cell (rather than an infinite number)
at the expense of having to diagonalise the hamiltonian at aninfinite number ofk-points.
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Luckily there is a well known and sophisticated number of ways to reduce this to a small
number of points within the irreducible Brillouin zone.11, 12 The Bloch transform of a real
space matrixHRLR′L′ (in the notation described at equation (3) below) is

HRL R′L′(k) =
∑

T

H(R+T)L R′L′ eik·T,

whereR andR′ run only over atoms in the primitive unit cell, whileT are all the trans-
lation vectors of the lattice. As long as the matrixH(R+T)L R′L′ is short ranged this can
be done easily; for long ranged matrices such as the bare structure constants of (30) below,
this must be done using the Ewald method. If you like you candefinea two centre matrix as
one for which the Bloch transformation can be reversed (using all Nk points in the whole
Brillouin zone)

H(R+T)L R′L′ =
1

Nk

∑

k

HRL R′L′(k) e−ik·T.

Indeed this is a way to extract a two centre tight binding hamiltonian from an LDA band-
structure calculation;13 an alternative approach is described in section 3.2 below.

In this lecture, I will concentrate solely on the method of direct diagonalisation, but
an alternative and potentially much more powerful approachis to abandonk-space, even
for a periodic solid, and employ the recursion method to calculate not the eigenvalues and
eigenfunctions of the hamiltonianH , but its greenian or Green function; formally for a
complex variablez

Ĝ(z) = (z −H)−1.

Throwing awayk-space will lead to a huge computational benefit, namely thatthe cal-
culation scaleslinearly with the number of orbitals, but there is a heavy price to pay—
interatomic forces converge more slowly than the energy since they require off-diagonal
greenian matrix elements and the sum rule derived in equation (16) below is not auto-
matically guaranteed.14, 15 This can play havoc with a molecular dynamics simulation.
The problem has been solved by thebond order potentialwhich leads to aconvergentex-
pansion of the tight binding total energy in one-atom, two-atom, three-atom. . . terms—a
many-atom expansion. This is the subject of the lecture by Ralf Drautz in this workshop.8

2 Traditional Non Self Consistent Tight Binding Theory

2.1 Density operator and density matrix

The traditional non self consistent tight binding theory, as described, say, by Harrison,2 is
explained here by following Horsfieldet al.16, 17 We useH0 to denote the hamiltonian to
indicate that this is the non self consistent approximationto density functional theory as it
appears in the Harris–Foulkes functional5—the first two lines in equation (37) below. (We
follow the usual practice of suppressing the “hat” on the hamiltonian operator.) Hence,
H0 is the sum of non interacting kinetic energy and the effective potential generated by
someinput, superposition of atom centred, spherical charge densities.5 The hamiltonian
possesses a complete set of orthogonal eigenfunctions by virtue of the time independent
Schrödinger equation,

H0ψn = εnψn,
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which we will write using Dirac’s bra-ket notation as

H0 |n〉 = εn |n〉 . (1)

εn are the eigenvalues of the hamiltonian and these are used to construct theband energy,
Eband, thus

Eband =
∑

n

fn εn. (2)

Here,fn areoccupation numbers. In an insulator or molecule assuming spin degeneracy
these are either zero or two depending on whetherεn is greater than or less than the Fermi
energy. In a metal or molecule having a degenerate highest occupied level these are set
equal to twice the Fermi function or some other smooth function having a similar shape.12

As with any electronic structure scheme, if this is implemented as abandstructureprogram
and hence the hamiltonian is Bloch-transformed intok-space, then the eigenstates are la-
belled by their band index and wave vector so that in what follows, the indexn is to be
replaced by a composite indexnk. (At the same time matrices become complex and you
may assume that what follows until the end of this subsectionapplies separately at each
k-point.)

Central to the tight binding approximation is the expansionof the eigenstates ofH0 in
a linear combination of atomic(-like) orbitals(LCAO). This means that we decorate each
atomic site, which we denoteR to label its position vector with respect to some origin,
with orbitals having angular momentumL = ℓm. In this way,ℓ labels the orbitals ass, p
or d character, while theL label runs ass, x, y, z, xy and so on. These orbitals may be
written in bra-ket notation as

|RL〉 = |i〉 (3)

so that we can abbreviate the orbital site and quantum numbers into a single indexi or
j, k, l. In this way we have

|n〉 =
∑

i

cni |i〉 = cni |i〉 (4)

and we use the famous Einstein summation convention, for brevity, whereby a summation
over the indicesi, j, k, l is understood if they appear repeated in a product. (Conversely we
usen andm to label eigenstates ofH0 in equation (1) and these are not summed implicitly.)
The expansion coefficientscni are the eigenvectors ofH0 in the LCAO representation. The
parameters of the tight binding model are the matrix elements of the hamiltonian in the
LCAO basis which we write

H0
ij = 〈i|H0 |j〉 .

We mayassumethat our chosen orbitals are orthogonal to each other, but tobe more
general there will a matrix of overlap integrals that may also comprise a part of our tight
binding model. These are

Sij = 〈i|j〉 .
It then follows from (4) that (summing overj, remember)

〈i|n〉 = Sijc
n
j and 〈n|i〉 = c̄nj Sji (5)
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in which a “bar” indicates a complex conjugate. The Schrödinger equation (1) becomes a
linear eigenproblem,

(

H0
ij − εnSij

)

cni = 0. (6)

In the case of anorthogonaltight binding model, we haveSij = δij , otherwise we need
to solve a generalised eigenproblem which is done by a Löwdin transformation. Denoting
H0

ij andSij in bold by matrices, we insertS− 1

2 S
1

2 after the right parenthesis in (6) and

multiply left and right byS− 1

2 :

0 =
(

S− 1

2 H0S− 1

2 − εn1
)(

S
1

2 cS− 1

2

)

=
(

H̃− εn1
)

z,

which can be solved as an orthogonal eigenproblem, and recover c from z by back-
substitution using the previously obtained Cholesky decomposition ofS. Now we have
our eigenvectorscni from which we construct a density matrix, which is central tothe
electronic structure problem. The density matrix providesus with the band energy, local
“Mulliken” charges, bond charges (in the non orthogonal case)5, bond orders,4 interatomic
forces, and in the case of time dependent tight binding the bond currents via its imaginary
part.18 The density operator̂ρ needs to have the following properties.

Property 1. Idempotency, meaninĝρ2 = ρ̂,

Property 2. Tr ρ̂ = N , the number of electrons,

Property 3. Tr ρ̂H0 =
∑

n fn εn = Eband, the band energy,

Property 4. Tr ρ̂ ∂
∂λ
H0 = ∂

∂λ
Eband, the Hellmann-Feynman theorem.

We know from quantum mechanics19, 20 that the one particle density operator isdefinedas

ρ̂ =
∑

n

fn |n〉 〈n| .

To find its representation in the LCAO basis, we first define a unit operator,

1̂ = |i〉S−1
ij 〈j| . (7)

To show that itis the unit operator, write

〈n|n〉 = 1 = 〈n|i〉S−1
ij 〈j|n〉

= c̄nkSkiS
−1
ij Sjlc

n
l

= c̄ni Sijc
n
j

(after using (5) and swapping indices) which is consistent with (4). More generally we
have

〈n|m〉 = δnm = c̄ni Sijc
m
j . (8)

Now using our unit vector, we write the density operator in our, possibly non orthogonal,
LCAO basis,

ρ̂ =
∑

n

fn |n〉 〈n| =
∑

n

fn 1̂ |n〉 〈n| 1̂

=
∑

n

fn |i〉 cni c̄nj 〈j| . (9)
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A matrix element of the density operator is

ρkl =
∑

n

fn 〈k|i〉 cni c̄nj 〈j|l〉

=
∑

n

fn Skic
n
i c̄

n
j Sjl (10)

and in an orthogonal basis this reduces to the familiar density matrix

ρij =
∑

n

fn c
n
i c̄

n
j .

If you are familiar with general relativity or non cubic crystallography then you may wish
to view the matrixSij as the metric tensor that “raises” and “lowers” indices of covari-
ant and contravariant vectors.6, 15, 21 Finnis5 makes this point by distinguishing between
“expansion coefficients” and “matrix elements” of the density operator. In this way the
expansion coefficients of the density operator in the LCAO basis are

∑

n fn c
n
i c̄

n
j , while to

obtain density matrix elements their indices are “raised” by elements of the metric tensor
as in (10); in the orthogonal case (Sij = δij) this distinction vanishes.

Now we can demonstrate thatρ̂ has the properties 1–4 above. The following is really
included here for completeness as the student may not find it elsewhere in the literature.
However, on a first reading you may skip to section 2.3 after looking at equations (11),
(12), (13), (16) and (17).

Property 1. Idempotency follows immediately from (9).

Property 2. Tr ρ̂ = N. We must take the trace in the eigenstate basis, hence

Tr ρ̂ =
∑

m

∑

n

fn 〈m|i〉 cni c̄nj 〈j|m〉

=
∑

m

∑

n

fn c̄
m
k Skic

n
i c̄

n
j Sjlc

m
l

=
∑

m

∑

n

fn δmnδnm =
∑

n

fn = N.

After the second line we have used (8). We can make partial, “Mulliken” chargesqi
which amount to the occupancy of orbitali,

N =
∑

i

qi =
∑

n

fn c̄
n
i Sijc

n
j ,

using (8). Because of its importance in tight binding, we will write the Mulliken
charge associated with orbitali explicitly,

qi =
∑

n

fn

∑

j

c̄ni Sijc
n
j (11)

in which the sum overi implied by the summation convention is, in this instance,
suppressed. This is aweighted decomposition of the norm. Note that in this and the
following you can easily extract the simpler expressions for the more usual orthogonal
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tight binding by replacingSij with the Kroneckerδij in the implicit sums, in which
case

qi =
∑

n

fn |cni |2 .

It is worthwhile to note that in an orthogonal tight binding model the total charge can
be decomposed into individual atom centred contributions;on the other hand non or-
thogonality introducesbond charge4 so that as seen in (11) there is a summation over
both atom centred and bond charges. You may prefer the latterpicture: we all know
that in a density functional picture the covalent bond arises from the accumulation of
charge in between the atoms; in an orthogonal tight binding model one might ask how
is this accumulation described? The answer is that it is captured in thebond order.4, 8

Property 3. Tr ρ̂H0 =
∑

n fn εn = Eband.

Tr ρ̂H0 =
∑

m

∑

n

fn 〈m|i〉 cni c̄nj 〈j|H0 |m〉

=
∑

m

∑

n

fn c̄
m
k Skic

n
i c̄

j
nSjlc

m
l εm

=
∑

m

∑

n

fn δmnδnmεm =
∑

n

fn εn = Eband

using (1). One may wish to construct partial band energies,Ei, in an equivalent way
as

Eband =
∑

i

Ei =
∑

n

fn c̄
n
i Hijc

n
j .

The corresponding decomposition of thebond energy(18) in section 2.3 is the starting
point of the many-atom expansion in the bond order potential.8

Property 4. The Hellmann–Feynman theorem tells us that

∂

∂λ

(

Tr ρ̂H0
)

= Tr ρ̂
∂

∂λ
H0

because solution of the eigenproblem (6), through the Rayleigh–Ritz procedure leads
us to a density matrix that is variational with respect to anyparameterλ which may
be, for example, a component of the position vector of an atomR. Hence to calculate
the interatomic force we need to find

Tr ρ̂
∂

∂λ
H0 =

∑

m

∑

n

fn 〈m|i〉 cni c̄nj 〈j| ∂
∂λ
H0 |m〉

=
∑

n

fn c̄
n
i c

n
j 〈i| ∂

∂λ
H0 |j〉 .

Now our tight binding model furnishes us with hopping integrals,H0
ij , and by em-

ploying a suitable scaling law, for example equation (23) below, the two centre ap-
proximation and the Slater–Koster table we will know how these depend on bond
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lengths and angles; so while we don’t actually know〈i| ∂
∂λ
H0 |j〉, the derivatives that

wedoknow are

∂

∂λ
H0

ij =
∂

∂λ
〈i|H0 |j〉 = 〈 ∂

∂λ
i|H0 |j〉 + 〈i|H0| ∂

∂λ
j〉 + 〈i| ∂

∂λ
H0 |j〉 .

So

Tr ρ̂
∂

∂λ
H0 =

∑

n

fn c̄
n
i c

n
j

[

∂

∂λ
H0

ij − 〈 ∂
∂λ
i|H0 |j〉 − 〈i|H0| ∂

∂λ
j〉

]

.

Now, to deal with the unknown last two terms, using (4)

∑

n

fn c̄
n
i c

n
j

[

〈 ∂
∂λ
i|H0 |j〉 + 〈i|H0| ∂

∂λ
j〉

]

=
∑

n

fn

[

c̄ni 〈
∂

∂λ
i|n〉εn + εn〈n|

∂

∂λ
j〉cnj

]

=
∑

n

fn εn

[

c̄ni c
n
j 〈

∂

∂λ
i|j〉 + c̄ni c

n
j 〈i|

∂

∂λ
j〉

]

=
∑

n

fn εnc̄
n
i c

n
j

∂

∂λ
Sij

since

∂

∂λ
Sij =

∂

∂λ
〈i|j〉 = 〈 ∂

∂λ
i|j〉 + 〈i| ∂

∂λ
j〉.

Finally we arrive at

Tr ρ̂
∂

∂λ
H0 =

∑

n

fn c̄
n
i c

n
j

[

∂

∂λ
H0

ij − εn

∂

∂λ
Sij

]

. (12)

2.2 Density of states and bond order

Thedensity of statesis central to electronic structure theory and is defined to be22

n(ε) =
∑

n

δ(ε− εn). (13)

We can define a partial orlocal density of states,ni(ε), which is the density of states
projected onto the orbitali. We write

n(ε) =
∑

n

〈n| δ(ε−H0) |n〉

=
∑

n

∑

m

〈n|i〉S−1
ij 〈j|m〉 〈m| δ(ε−H0) |n〉

=
∑

n

∑

m

c̄nj SjiS
−1
ij Sjkc

m
k 〈m| δ(ε−H0) |n〉

=
∑

n

c̄nj Sjkc
n
k 〈n| δ(ε−H0) |n〉 .

The first line follows from the Schrödinger equation (1) andin the second line we have
inserted our unit operator (7) and a further unit operator,

∑

m |m〉 〈m|. The fourth
line follows because of the orthogonality of the eigenvectors, |n〉 which means we have
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〈m| δ(ε−H0) |n〉 = 〈n| δ(ε−H0) |n〉 δmn. Remember that in the fourth linej andk are
dummy orbital indices to be summed over. We can replace thesewith i andj for neatness
and this leads to

n(ε) =
∑

n

c̄ni Sijc
n
j δ(ε− εn) =

∑

i

ni(ε). (14)

Writing the summation overj explicitly we see that the local density of states is

ni(ε) =
∑

n

∑

j

c̄ni Sijc
n
j δ(ε− εn), (15)

with no summation overi, and that this is aweighteddensity of states;17 the weight in an
orthogonal basis is simply|cni |2—compare this with the Mulliken decomposition (11).

An example is shown in figure 1. This is a self consistentmagnetictight binding
calculation of the electronic structure of a Cr impurity in Fe, modelled as a dilute, ordered
Fe15Cr alloy.23 Very briefly magnetic tight binding is achieved by includinga spin index,
|i〉 = |RLσ〉, (now the occupation numbers vary between zero andone, not two) and
adding an exchange potential to the self consistent hamiltonian to allow these to split. In
addition to the Hubbard-U (see section 4) one includes a “StonerI” parameter. We cannot
go into details here, but it’s gratifying that the simple tight binding modelquantitatively
reproduces the LSDA result, even to the extent of predictingthe “virtual bound state” on
the Cr impurity.24, 25

The density of states can be used to find the band energy, sinceby the properties of the
Dirac delta function,

∑

n

fn

∫

δ(ε− εn) ε dε =
∑

n

fn εn = Eband.

If we allow the occupation numbers to be represented by the spin degenerate Fermi–Dirac
distribution,2f(ε), then we find, using (13) and our property 3, above,

Eband = 2

∫

f(ε) ε n(ε) dε = Tr ρ̂H0 (16)

which is an important identity in tight binding theory and one which bears heavily on the
convergence of the many atom expansion in the bond order potential.26

Finally in this section we should mention that thebond orderwhich is central to the
bond order potential8 is obtained directly from the density matrix elements. We define

Θij =
1

2
(ρij + ρji)

as thepartial order of the bondas contributed by orbitalsi andj, it being understood that
these are on different atomic sites. The bond order between sitesR andR′ is obtained by
summing the partial bond order over all the orbitals on each atom in question,

ΘRR′ =
∑

LL′

ΘRL R′L′ . (17)
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Figure 1. Example of a local density of states.23 This is an ordered alloy, Fe15Cr on a body centred cubic (bcc)
lattice. On the left is the local spin density functional result and on the right a simple, non orthogonal magnetic
tight binding approximation. As is conventional, the spin up and down densities are shown as upright and upside
down functions respectively. The Fe atom shown is the one closest to the Cr impurity and the density is projected
onto thed-manifolds. Apart from the accurate description provided by the tight binding model, the most striking
feature is the virtual bound state24,25 seen as sharp peak in the local Cr density of states. It’s notable that the
occupied, spin up state hast2g symmetry while its unoccupied partner belongs largely to the eg manifold.

2.3 The tight binding bond model

Just as in density functional theory, the sum of occupied eigenvalues of the one electron
hamiltonian is not the total energy. In the traditional tight binding approximation, begin-
ning probably with the papers of Jim Chadi,27 one writes simply

Etot = Eband + Epair

for the total energy in theband modelandEpair is a pairwise repulsive energy whose func-
tional form and parameters constitute ingredients of the tight binding model; it is intended
to represent the double counting and ion–ion contributionsto the density functional total
energy.27 “Double counting” is a term given to the electron–electron interaction energy
in density functional theory. Because the theory is cast into a one electron form through
the Kohn–Sham equations, the band energy, by summing over the eigenvalues, counts the
electron–electron interaction twice. The interaction between, say, electrons in occupied
states 1 and 2 is counted first when eigenvalue 1 is added in andagain when eigenvalue 2 is
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added. One cannot simply divide by two becauseEband also contains kinetic and electron–
ion energies which are not double counted. Hence one recalculates the electron–electron
interaction energy and subtracts it, calling this the “double counting” correction.

Pursuing an argument that goes back as far as the sixties,28, 29Pettifor30 formulates the
total energy in terms of thebondenergy,Ebond, rather than the band energy. The tight
binding bond model6 (TBBM) is the starting point for both self consistent tight binding
which is described below in section 4 and for the modern bond order potentials.8 Therefore
we will pursue only the bond model further here. The essential point is that one arrives at
thecovalent bond energy3, 6 by removing the diagonal elements ofEband = Tr ρ̂H0. We
recall that orbital indicesi andj are a composite of site labels and quantum numbers, and
write

Ebond =
1

2

∑

ij

R′ 6=R

2ρijH
0
ji =

1

2

∑

RL R′L′

R′ 6=R

2 ρRLR′L′ H0
R′L′ RL. (18)

Here all terms are excluded from the double sum if orbitalsi andj are on the same site
R. Note how by dividing and multiplying by two we can expose this as a sum of bond
energies which is then divided by two to prevent each bond being double counted in the
same way as a pair potential is usually written.

In the TBBM, the remaining diagonal terms inEband are grouped with the correspond-
ing quantities in the free atom. In the non self consistent tight binding approximation, the
on-site matrix elements ofH0 are simply the free atom orbital energies (eigenvalues of the
atomic hamiltonian)

H0
RL RL′ = εRℓ δLL′

and in addition to the hopping integrals, these are parameters of the tight binding model,
εs, εp andεd. Furthermore, we assume certain orbital occupancies in thefree atom, say,
NRℓ, whereas after diagonalisation of the tight binding hamiltonian one finds these orbitals
have occupancy given by the diagonal matrix elements of the density matrix. Hence there
is a change in energy in going from the free atom limit to the condensed matter which is

Eprom =
∑

RL

(

ρRLRL H
0
RL RL −NRℓ εRℓ

)

=
∑

RL

(ρRLRL −NRℓ) εRℓ

=
∑

RL

∆qRL εRℓ. (19)

We have assumed for now that on-site elements ofH0 are strictly diagonal and we recog-
nise the first term in the first line as the difference betweenEband andEbond. Eprom is
called thepromotion energysince it is the energy cost in promoting electrons that is very
familiar, say, in thes–p promotion in covalent semiconductors in “preparing” the atoms in
readiness to form thesp3 hybrids in the diamond structure or thesp2 hybrids in graphite.
Thus in the tight binding bond model thebinding energyis written as the total energy take
away the energy of the free atoms,

EB = Ebond + Eprom + Epair. (20)
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The interatomic forceis minus the gradient of the pairwiseEpair which is trivial, minus
Tr ρrH0 which can be computed using equation (12) assuming thaton-sitehamiltonian
matrix elements remain constant; this is the fullynon self consistent tight binding ap-
proximation. And in fact at this level of approximation the band and bond models are
indistinguishable. The first order variation ofEB with respect to atom cartesian coordinate
Rα is

∂

∂Rα

EB =
∑

RL R′L′

R′ 6=R

2ρRLR′L′

∂

∂Rα

H0
R′L′ RL +

∂

∂Rα

Eprom +
∂

∂Rα

Epair. (21)

This is written for the orthogonal case, since this approximation forms a tenet of the
TBBM. However, it’s easy enough to add in the term from (12) containing the overlap
and of course the diagonal elementsSii are constant and do not contribute to the force.
Note that the half in front of (18) has vanished—in the calculation of the force one sums
over all bonds emanating from the atom atR, not just half of them!

Now comes a rather subtle point. Unlike the band model, the bond model is properly
consistent with the force theorem.31 This states that there is no contribution to the force
from self consistent redistribution of charge as a result ofthe virtual displacement of an
atom. If a self consistent electronic system is perturbed tofirst order then that change in
the bandstructure energy due to electron–electron interaction is exactly cancelled by the
change in the double counting. This remarkable result meansthat by making a first order
perturbation one cannot distinguish between an interacting and a non interacting electron
system.32 Indeed to calculate the interatomic force it is sufficient tofind the change in
band energy while making the perturbation—in this case the virtual displacement of an
atom—in the frozen potential of the unperturbed system. In the band model there will be
a first order change in the band energy upon moving an atom which oughtto be cancelled
by an appropriate change in the double counting, butis notbecause this is represented by
the pair potential. Now we can discuss∂Eprom/∂Rα. In the band model there is no con-
tribution to the force fromEprom (19); because of the variational principleεRLδqRL = 0,
andqRLδεRL = 0 because theεRL are constants. However the Mulliken charge transfers
are not necessarily zero and the force theorem does require any electrostatic contributions
due to charge transfer to be included in the interatomic force;33, 34 neglect of these leads
to the inconsistency of the band model. In the TBBM the most limited self consistency is
imposed, namely theAnsatzof local charge neutrality so that electrostatic charge transfer
terms vanish. This requires that for each site thetotal Mulliken charge difference between
free atoms and condensed phase summed over all orbitals is zero. This is achieved iter-
atively by adjusting the on-site orbital energies. Here is the simplest example of a self
consistent tight binding theory. It only affects the diagonal, on-site hamiltonian matrix
elements and hence onlyEprom is changed. Suppose we now write the hamiltonian as

H = H0 +H ′ (22)

whereH ′ has only diagonal elements which we may call∆εRL. Then

ETBBM
prom =

∑

RL

(ρRL RL −NRℓ)HRL RL

=
∑

RL

∆qRL (εRℓ + ∆εRℓ) .
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In a sense this isn’t really “promotion energy” anymore because we have applied the on-site
energy shift to the free atoms also, but it is consistent withthe formulation of the TBBM.6

There will now be a contribution to the force on atomR from the new term
∑

L ∆qL∆εℓ.
If the self consistency is achieved in such a way that all orbital energies are shifted by the
same amount at each site, then this contribution vanishes because∆εℓ is independent ofL,
moves to the front of the summation sign and

∑

L ∆qL = 0 by the local charge neutrality
condition. Further and complete discussion of the TBBM can be found in the original
paper6 and in Finnis’ book.5

3 How to Find Parameters

Now we turn to the question that is probably the most controversial. Many people dislike
the tight binding approximation because whereas on the one hand we claim it to be close
to theab initio local density approximation solution, on the other we are reduced to finding
parameters empirically just as if this were another classical potential. My own view is
that if the tight binding approximation contains enough of the physics of the system we
are studying then any reasonably chosen set of parameters will provide us with a useful
model. From this point of view we would also demand that only avery small number
of parameters is actually employed in the model. Furthermore it should be possible to
choose these by intelligent guesswork and refinement starting from some well established
set of rules; for example Harrison’s solid state table,2 or the prescription of Spanjaard and
Desjonquères for the transition metals.35 For example, the latter prescription has furnished
us with useful tight binding models23, 36 for Mo, Re, Nb and Fe each with some five to ten
adjustable parameters. Alternatively a 53-parameter model for Mo was produced by very
careful fitting to a huge database of properties.37 There doesn’t appear to exist a particular
advantage of one approach over the other and both types of model have turned out to be
predictive of electronic and structural properties of the transition metals.

We need to distinguish between hamiltonian parameters—on-site orbital energiesεRℓ

and hopping integralsH0
RLR′L′—and the parameters of the pair potential. Additional com-

plications arise as described later in section 3.3 in the case of environmentally dependent
parameters.37

I wish to illustrate the problem by reference to some examples from the literature.

3.1 Parameters by “adjustment”—example of ZrO2

The tight binding model for zirconia,38 ZrO2, was designed to provide a description of the
structural properties of this industrially important ceramic material. ZrO2 suffers a num-
ber of structural phase transitions as a function of temperature. This is exploited in an
extraordinary phenomenon called transformation toughening.39 Its low temperature phase
is monoclinic, at intermediate temperatures it is tetragonal and the high temperature mod-
ification is cubic. An open question was whether the tetragonal to cubic transition is of
first or second order thermodynamically, order–disorder ordisplacive. Additionally, it is
known that the cubic structure is stabilised at low temperature by doping with aliovalent
cations (Y, Ca, Mgetc) while the mechanism for this was unknown. The tight binding
model turned out to be capable of addressing both these issues and the order of the transi-
tion was discovered40 as well as the mechanism of stabilisation of the cubic phase.41 The
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Figure 2. Bond integrals, after Majewski and Vogl.42 This shows the well known atomic orbitals of the various
s, p or d types joined along a bond. Radial symmetry along the bond is assumed leading to the designation of the
bond asσ, π or δ. To construct a tight binding hamiltonian requires these fundamental bond integrals assembled
through the Slater–Koster table using the direction cosines of the bond in a global cartesian system (these bond
integrals are given with respect to az-axis directed along the bond). This is illustrated in figure6.5 in ref [3].

strategy of finding tight binding parameters was quite simple. Since the eigenvalues of
the hamiltonian describe the energy bands it is sensible to adjust the on-site energies and
hopping integrals to the LDA bandstructure, and then find a simple pair potential whose
parameters are chosen to obtain, say, the equilibrium lattice constant and bulk modulus. In
this case the smallest number of adjustable parameters was chosen to replicate the cubic
phase in the hope that the model will thenpredict the ordering in energy of the competing
phases. The steps are these.

1. Choose aminimal tight binding basis set. In this cased-orbitals were placed on the
Zr atoms ands andp on the oxygen. We should mention that being an ionic crystal
the TBBM is inadequate and this is in fact aself consistenttight binding model using
polarisable ions. This is explained later in section 4. The hopping matrix elements are
linear combinations of the fundamental bond integrals thatare illustrated in figure 2.
The particular linear combination depends on the bond anglegeometry and is encap-
sulated in the Slater–Koster table.1 This is illustrated in figure 6.5 in ref [3]. We only
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Figure 3. Energy bands of ZrO2 using both LDA and a tight binding model in both fluorite and rutile crystal
modifications. The model parameters were adjusted to the fluorite bands and the rutile bands are therefore a
prediction. We should note that a number of features such as the splitting in thed-manifold intot2 andeg sub-
bands and the crystal field widening of thep-derived ligand band in rutile are consequences of using theself
consistent polarisable ion model, and this will be described later in section 4. But we can note in anticipation
that it is the new∆ parameters that permit the ordering (t2 > eg) in the cubic crystal field andvice versain the
octahedral field to be reproduced automatically.

need to find the relevant fundamental bond integrals betweenneighbouring atoms.
Zr–O first neighbour bonds require us to knowsdσ, pdσ andpdπ and we choose also
to include second neighbour O–O bonds to be made byssσ, spσ, ppσ andppπ bond
integrals. We have to choose both their value and the way in which they depend on
bond length. There is a “canonical band theory,” that is really appropriate for met-
als9, 43, 44but whichfaux de mieuxwe can apply more generally. This provides us with
guidance on how the bond integrals decay with distance and also with certain ratios,
namelyppσ:ppπ andddσ:ddπ:ddδ, see equation (30) below. The required hopping
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Figure 4. Total energy versus volume in four competing crystal structures of ZrO2.38 At each volume, the energy
is minimised simultaneously with respect to all the remaining degrees of freedom. (a) LDA calculations of the
absolute binding energy (energy with respect to spin polarised free atoms); (b) tight binding results referred to
the equilibrium energy of the monoclinic phase. (c) and (d) show the axial ratioq and distortion parameterδ in
the tetragonal modification as a function of volume.

integrals are initially taken from Harrison’s solid state table and adjusted visually to
obtain agreement with the shapes, and especially the widthsof the LDA bands. One
can also adjust to either the LDA or to experimental band gaps. Also the scaling of the
bond integrals can be adjusted to the volume dependence of the LDA bandwidths.a

The result is shown in figure 3.

We should give more detail of how the bond integrals depend onbond length,r. A
very useful function is that of Goodwin, Skinner and Pettifor46 (GSP)

(ℓℓ′m) = V0

(

d

r

)n

exp

{

n

[

−
(

r

rc

)nc

+

(

d

rc

)nc
]}

. (23)

aIt is very useful to have a computer program that can calculate energy bands, density of states, total energy using
both LDA in some form and in the tight binding approximation,preferably all using the same input file. Luckily
such a program exists.45 Students may contact the author if they wish to learn how to use this.
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Most important are the prefactorV0 which is the value at the equilibrium bond length,
d, and the exponentn which determines the slope of the function at equilibrium, since
whenr = d the argument of the exponential vanishes. The role ofnc andrc is to give
a rapid decay to the function at aroundr = rc.

2. A pair potential needs to be chosen. The GSP function can beused but in the ZrO2
model a very simple Born–Mayer form was used between first neighbour Zr–O bonds
only. The Born–Mayer functionϕ(r) = A e−br has only two parameters which were
fitted to the lattice constant and bulk modulus of cubic ZrO2.

Figure 4 shows energy volume curves for the competing crystal structures comparing
the tight binding model to LDA. Also shown are the order parameters that describe the
tetragonal to cubic phase transition as functions of volume.

It is rather clear that the tight binding model for ZrO2 gives a really excellent set of
predictions, having been fitted (or adjusted, rather) only to the cubic structure. In particu-
lar the rutile structure is found to be much higher in energy than its competitors—a feature
that cannot be reproduced in purely classical models. The vanishing of the order parame-
ters with pressure is well reproduced qualitatively. This and the example shown in figure 1
where simple models, rather insensitive to the choice of parameters, reveal useful and pre-
dictive physics gives one confidence the tight binding approximation is indeed a valuable
and reliable theory.

3.2 Parameters taken from first principles tight binding—example of Mo

Students who are not particularly interested in the detailsof an LMTO calculation, may
skip this section after looking at figure 5 and subsequent comments. However section 3.3
is important. It makes sense to obtain the hamiltonian matrix elements fromab initio band-
structures. Probably the most transparent LDA bandstructure theory is the one provided
by the linear muffin-tin orbitals (LMTO) method. In the atomic spheres approximation
(ASA) the entire bandstructure problem is reduced to knowing four “potential parameters”
in eachRℓ site and angular momentum channel. Moreover these parameters have a clear
interpretation in terms of the bandstructure.C is the centre of the band;∆ is the bandwidth
parameter;γ is a distortion parameter describing the deviation from canonical bands and
finally p is a small parameter allowing the eigenvalues to be correct up to third order in
their deviation from some chosen energy calledεν . An LMTO is a composite orbital-like
basis function. A sphere is inscribed about each atom with radius such that the sum of all
sphere volumes equals the total volume; in a simple monatomic crystal this is the Wigner–
Seitz radius. Within the sphere the radial Schrödinger equation is solved at the energy
εν in the current potential and this solution and its energy derivative are matched to solid
Hankel and Bessel functions between the spheres. This matching condition is enough to
provide the potential parameters which are functions of thelogarithmic derivatives of the
radial Schrödinger equation solutionsφL(r) = φℓ(r)YL(r). Each LMTO envelope may
be expanded about a given atomic site using the property thata Hankel function at one
site may be written as a linear combination of Bessel functions at some other site. This
property means that all the Hankel functions in the solid canbe expressed as a “one cen-
tre” expansion about any one atomic sphere. The expansion coefficients are called “κ = 0
structure constants” and they transform under rotations according to the Slater–Koster table
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and hence may be identified asℓℓ′m hopping integrals.47, 48 However conventional struc-
ture constants are very long ranged. To make contact with tight binding theory Andersen
and Jepsen showed that one can make similarity transformations between sets of solid state
LMTO’s;49 each basis set being equivalent to another since they give identical bandstruc-
tures. In particular Andersen demonstrated that one can defined a “most localised” and an
“orthogonal” set of LMTOs. The transformation works like this. In the ASA an LMTO
at siteR is made up of a linear combination of a radial solutionφ(r − R) (the “head”)
and energy derivative functionṡφ(r − R′) (dφ/dε evaluated atεν) at all other sites (the
“tails”). These are assembled into a one centre expansion using the structure constants. So
an LMTO looks like this,

χRL(r − R) = φRL(r − R) +
∑

R′L′

φ̇R′L′(r − R′) hR′L′ RL.

By a choice of normalisation, one can choose theφ̇(r−R′) to be those that areorthogonal
to the radial solutions in each sphere. This particular set of energy derivative functions is
given a superscriptγ and one is said to be using the “γ-representation.” More generally
one can vary the normalisation by mixing in some radial solutions with theφ̇(r − R′) to
make up the tails of the LMTO. To do this we write

φ̇RL(r − R) = φ̇γ
RL(r − R) + φRL(r − R) oRL, (24)

so that in theγ-representation, the potential parameteroRL is zero. It’s calledo for overlap
but has units of energy−1. To construct the overlap matrix in the ASA one has to expand
out〈χ|χ〉; and similarly

〈

χ
∣

∣−∇2 + Veff

∣

∣χ
〉

for the hamiltonian. If we write thathR′L′ RL

is an element of a matrixh andoRL andpRL are elements of diagonal potential parameter
matrices,o andp, then Andersen finds for the overlap matrix48

S = 1 + oh + ho+ hph. (25)

As we mentionedp is a small potential parameter. So in theγ-representationo = 0 and to
second order the overlap is unity and we have an orthogonal basis. The hamiltonian matrix
turns out to be48

H = εν + h + hoεν + ενoh + h (o+ pεν)h. (26)

Again, in theγ-representation, neglecting third order terms the hamiltonian is justH =
εν + h. So if one calculates structure constants and self consistent potential parameters
using an LMTO code then one can build an orthogonal tight binding model by explicitly
building H in theγ-representation. By construction, to second order it will reproduce the
LDA energy bands.

Unfortunately there is no guarantee that this hamiltonian is short ranged. Andersen
made a particular choice of the potential parameteroRL by defining “screening constants”
αRL in this way: ref [9], eq (91),

1

oRL

= CRL − εν,RL − ∆RL

γRL − αRL

. (27)

They are called screening constants because the effect of adding radial solutions to thėφγ

in (24) is to match the Schrödinger equation solutions in the sphere to Hankel functions
KL(r−R) that have been screened by additional Hankel functions at surrounding atomic
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sites. There is an electrostatic analogy. The solid Hankel function represents the elec-
trostatic potential due to a2ℓ multipole. This can be screened by surrounding the sphere
with further grounded metal spheres, whose contribution tothe potential is then provided
by these further Hankel functions at the surrounding spheres. If one chooses the screen-
ing constantsαRL to equal the band distortion parametersγRL then one arrives at the
γ-representation since we getoRL = 0 in (27). All other representations are specified by
choices of screening constants. The choiceαRL = 0 corresponds to the so called “first
generation” LMTO which employs the standardκ = 0 KKR structure constantsb

BR′L′ RL = −8π
∑

L′′

(−1)ℓ (2ℓ′′ − 1)!!

(2ℓ− 1)!!(2ℓ′ − 1)!!
CL′LL′′ KL′′(R − R′) (28)

where

KL(r) = r−ℓ−1 YL(r),

is the solid Hankel function,

CL′′L′L =

∫∫

dΩ YL′′ YL′ YL (29)

are Gaunt coefficients andYL are real spherical harmonics (see Appendix). The whole
Slater–Koster table is encapsulated in this formula; the Gaunt coefficients provide selection
rules that pick out certain powers ofr and angular dependencies. By pointing a bond along
thez-axis one can see how the canonical scaling and ratios come about since these structure
constants are simply,48

Bssσ = −2/d

Bspσ = 2
√

3/d2

Bpp{σ,π} = 6{2,−1}/d3

Bsdσ = −2
√

5/d3

Bpd{σ,π} = 6
√

5{−
√

3, 1}/d4

Bdd{σ,π,δ} = 10{−6, 4,−1}/d5 (30)

in whichd is a dimensionless bond lengthr/s, wheres is conventionally chosen to be the
Wigner–Seitz radius of the lattice. These can be compared with the cartoons in figure 2
in which the overlapping of two positive lobes leads to a negative bond integral andvice
versa. This is because the orbitals are interacting with an attractive, negative, potential
(section 1.1). Note how the factor(−1)ℓ in (28) neatly takes care of the cases likepsσ =
−spσ. You have to be careful of these if you program the Slater–Koster table by hand.5

Transformations from the “first generation” to “second generation” LMTO basis sets
are quite easily done. Having chosen screening constants one transforms the structure
constants thus,c

Bα = B + BαBα (31)

bAndersen uses the symbolS for structure constants but we’ve already used it for the overlap, which is standard
tight binding usage. Here we useB for Andersen’s which differ by a prefactor2/[(2ℓ − 1)!!(2ℓ′ − 1)!!] and a
minus sign from the KKR structure constants.50

cClearlyBR′L′ RL has two centre form, section 1.1, as it depends only on the connecting vectorR − R
′ (28).

It’s less obvious thatBα is a two centre matrix because of the three centre terms introduced by the second term
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which is a Dyson equation, andα is a diagonal matrix. Then one transforms the potential
parameters by defining a vector (we suppress theRL subscripts)

ξ = 1 + (C − εν)
α

∆

after which (ref [9], p. 88)

c = εν + (C − εν) ξ ; d = ξ2∆

wherec andd are the band parametersC and∆ in the new representation. The overlap
parametero is transformed according to (27).

Andersen and Jepsen49 determined empirically a set of screening constants, namelyd

αs = 0.3485 αp = 0.05304 αd = 0.010714, (32)

which lead to the “most localised” or most tight binding LMTObasis. Now one can con-
struct hamiltonians and overlaps according to (26) and (25)by noting that thefirst order
hamiltonian is constructed from potential parameters and structure constants9, 48

hRL R′L′ = (cRL − εν,RL) δRLR′L′ +
√

dRL B
α
RL R′L′

√

dR′L′ .

Now we want our tight binding hamiltonian to have two centre form and it is easy to
identify which are the three centre terms in the LMTO hamiltonian and overlap matrices—
they are contained in the terms bilinear inh, the last terms in (26) and (25). These terms
(as do the linear terms) also contain two and one centre terms, of course, arising from the
diagonal terms ofh. We can dispose of three centre terms in two ways.

1. We can work tofirst order, in which case, in bothα- andγ-representations

H(1) = εν + h (33)

and sinceoh terms are of second order, both these are orthogonal models with overlap
being unity.

2. We can work to second order by retainingoh terms but neglecting the small potential
parameterpγ in theγ-representation. In this representation (o = 0) this is no differ-
ent from the first order hamiltonian, and the overlap is unity. In theα-representation
this introduces some additional two centre contributions to the matrix elements of the
hamiltonian and overlap, and we are careful to extract one and two centre contribu-
tions from the last term in (26).

All this is illustrated in figure 5 for the bcc transition metal Mo. The screening constants
from (32) are used. Here are some noteworthy points.

1. Clearly the two representations deliver different sets of hopping integrals.You cannot
expect density functional theory to furnish you with THE tight binding model.On
the other hand they show a proper decay with increasing bond length. The decay is

in (31). Nonetheless because the transformation is done in real space it is also a two centre matrix by virtue again
of its dependence only uponR−R

′. On the other hand it possesses additional “environmental dependence,” see
section 3.3.
dAn alternative is to defineαRℓ = (2ℓ + 1)(rRℓ/s)2ℓ+1 by choosing site andℓ-dependent “hard core radii”
rRℓ.51 This is consistent with “third generation LMTO.”52
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Figure 5. Hopping integralsℓℓ′m in the body centred cubic transition metal Mo, calculated using LMTO theory.
The three integralsddσ, ddπ, andddδ are found by rotating thez axis to first and then to second neighbour
bonds and doing this at three different atomic volumes;53 hence for each integral six values ofℓℓ′m are shown
as a function of bond length. Three model LMTO hamiltonians are used. The crosses refer to the two centre
γ-representation; the circles to thefirst order α-representation and the pluses to thesecond order, two centre
H

α. In the lower panel are shown the diagonal matrix elements and their, rather strong, volume dependence.

more rapid in the tight binding,α-representation as expected, furthermore the first
order tight binding representation is strictly orthogonal; not shown in figure 5 are the
overlap matrix elements in the second order tight binding representation, but indeed
these are very small—no greater than 0.025 in magnitude. Note that the tight binding
bond integrals respect the signs and roughly the canonical ratios of the bare structure
constants (30) while in theγ-representationddδ and the second neighbourddπ have
the “wrong” signs. Furthermore we would find that while the tight binding bond
integrals shown reproduce the LDA bands using just first and second neighbour matrix
elements, this is not the case for theγ-representation. Note that the first and second
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order tight binding matrix elements are essentially the same; the additional second
order terms may be safely neglected and the first order orthogonal hamiltonian (33) is
clearly the proper one to use for this case.

2. If you have the patience, then you can do this exercise by hand in the case of the first
order hamiltonian.48 However the scheme has been automated and is implemented in
our LMTO suite.45

3. Unfortunately the on-site energies shown in the lower panel of figure 5 are far from
independent of volume. This is a remaining unsolved question for the construction
of tight binding models in which the on-site energies are invariably constant (except
of course for the adjustments in self consistent models to account for electrostatic
shifts due to charge transfer, see (44) below). Andersen48 points out that the Dyson
equation (31) provides guidance on how to account for this volume dependence in
terms of the local neighbour environment. Whereas on-site matrix elements of the
bare structure constants,B are zero, we have from (31)

Bα
RLRL =

∑

R′′ 6=R

∑

L′′

BRL R′′L′′ αR′′ℓ′′ B
α
R′′L′′ RL

and the on-site matrix element of (33) is51

εRL = cRL + dRLB
α
RL RL.

However the band centre parameterc and bandwidth parameterd are also strongly
volume dependent.9, 44 An important contrast with the ASA is that in tight binding,
the on-site parameters are constant—the scaling law has to take care of both the bond
length dependence at constant volumeandthe volume dependence itself.54

3.3 Environmentally dependent tight binding matrix elements

Possibly the most striking feature displayed in figure 5 is a discontinuity, most notably in
theddπ andddδ bond integrals, between first and second neighbours. This isof particular
importance to structures like bcc which have first and secondneighbours rather similar in
bond length. It means that onecannotfind a simple scaling law, such as the GSP (23)
that can connect all the points in the graph. This effect was noticed in the case of thessσ
bond integral in Mo by Haaset al.37 and they proposed a very significant development in
tight binding theory, namely the use ofenvironmentally dependentbond integrals.55 The
discontinuities in thedd bond integrals were noticed by Nguyen-Manhet al.53 who offered
the physical explanation in terms of “screening.” The basicidea is that the bond between
two atoms isweakenedby the presence of a third atom. Therefore the scaling of a bond
integral, say by the GSP function (23) is modified by multiplying it by (1 − Sℓℓ′m) where
the “screening function,”Sℓℓ′m, is the hyperbolic tangent of a function37

ξRR
′

ℓℓ′m = Aℓℓ′m

∑

R′′

R′′ 6=R,R′

exp

[

−λℓℓ′m

( |R − R′′| + |R′ − R′′|
|R − R′|

)ηℓℓ′m
]

, (34)

in whichA, λ andη are parameters to be fitted. This complicated expression canbe simply
explained.37, 53 As a third atom,R′′ approaches theR − R′ bond the term in parenthe-
ses becomes small, and approaches one in the limit that atomR′′ sits inside theR − R′
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bond. This increases the value of the exponential and the tanh function smoothly reduces
the R − R′ bond integral. Whereas Tanget al.55 introduced this function empirically,
Nguyen-Manhet al.53 were able to derive its form using the theory of bond order poten-
tials, and explainwhyddσ is not strongly screened whileddπ andddδ are. Modern tight
binding models51, 56, 57for transition metals are now fitted to curves such as those infigure 5
using (34). Indeed in these new schemes a repulsive energy isalso fitted to an environmen-
tally dependent function similar to (34). This is intended to make a better description of
the valence–core overlap44, 58between atoms which is short ranged but not pairwise and is
otherwise not properly captured in the tight binding bond model. So nowadays one finds
instead of (20)

EB = Ebond + Eprom + Eenv + Epair (35)

in the TBBM, andEenv is the new environmentally dependent repulsive energy; it being
understood thatEbond may be constructed using environmentally dependent hopping in-
tegrals too.Eprom is sometimes omitted,56, 57 in the instance that only one orbital angular
momentum is included in the hamiltonian, for example if one employs ad-band model for
transition metals.

4 Self Consistent Tight Binding

We described a tight binding model for ZrO2 in section 3.1. The local charge neutrality
of the TBBM is clearly inadequate to describe an ionic crystal for which a dominant part
of the total energy is the Madelung sum of electrostatic pairterms.10 A way to deal with
this in tight binding was proposed by Majewski and Vogl42, 59 based on a Hubbard-like
hamiltonian of Kittler and Falicov.60 In this scheme the total charge transfer at each site,
∆qR, from (11) and (19) are taken as point charges. The hamiltonian is again

H = H0 +H ′ (36)

as in (22). Two terms make upH ′, the Madelung energy of the lattice of point charges and
a positive energy that is quadratic in∆qR, namelyUR∆q2

R
; employing the well-known

“HubbardU ” that acts to resist the accumulation of charge. This problem is solved self
consistently. An extension of this scheme to allow the charge to be expressed as multipoles,
not just monopoles, was proposed independently by Schelling et al.61 and Finniset al.38

In the latter paper, the connection was made to density functional theory and the TBBM,
so we will pursue the same argument here. As noticed by Elstner et al.62 the Hohenberg–
Kohn total energy in DFT can be expanded about some referenceelectron density,ρ0(r).
If H0 is the hamiltonian with effective potential generated by the reference density, and
just as in section 2.1 its eigenfunctions are|n〉 then the total energy correct to second order
is63 (e is the electron charge)
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E(2) =
∑

n

fn

〈

n
∣

∣H0
∣

∣n
〉

−
∫

ρ0(r)V 0
xc(r)dr − E0

H + E0
xc + EZZ

+
1

2

∫

dr

∫

dr′
{

e2
δρ(r)δρ(r′)

|r − r′|

+ δρ(r)
δ2Exc

δρ(r)δρ(r′)
δρ(r′)

}

. (37)

E0
H is the Hartree energy andE0

xc andV 0
xc the exchange–correlation energy and potential

belonging to the reference density,ρ0(r). The first two lines make up the Harris–Foulkes
first order functional; we recognise the first line as the band energy, infact the sum of
occupied eigenvalues of the non self consistentinput hamiltonian, and the second as the
interaction term (double counting) plus the ion–ion pair potential,EZZ. In theself consis-
tent polarisable ion tight binding model38 (SCTB) we approximate the last two lines by a
generalised Madelung energy and a Hubbard energy, which adds asecond orderenergy5

to (35)

E2 =
1

2
e2

∑

RLR′L′

QR′L′ B̃R′L′ RL QRL +
1

2

∑

R

UR∆q2R. (38)

These two terms represent the electron–electron interactions. All the exchange and cor-
relation complexities are rolled into a single parameter, the HubbardU . The first term
in (38) is a classical interaction energy between point multipoles. The monopole term
is just a straight forward sum of Coulomb energies,1

2e
2 ∆qR∆qR′/ |R − R′|, while the

generalised Madelung matrix is just the LMTO bare structureconstant matrix (28), or to be
preciseBR′L′ RL = −(1/2π)(2ℓ+1)(2ℓ′+1)B̃R′L′ RL. In generalQRL is the multipole
moment of angular momentumL at siteR. If we knew the charge density, which we don’t
in tight binding, then we could define the moment

QRL =

∫

dr ρ(r) rℓ YL(r) (39)

for ℓ > 0; while for ℓ = 0 we’ll have

QR0 = ∆qRY0 =

√

1

4π
∆qR.

Although we don’t know the charge density in tight binding, we know the eigenvectors of
the hamiltonian and we can construct multipole moments fromthese. The monopole is of
course proportional to the Mulliken charge transfer. Although in tight binding we don’t
even specify what the basis functions (3) are, we can take it that they comprise a radial part
times an angular, spherical harmonic part, that is

〈r|RL〉 = fRℓ (|r − R|)YL(r − R). (40)

Then in terms of the eigenvector expansion coefficients (4),for ℓ > 0 we may define

QRL =
∑

L′L′′

∑

n

fn c̄
n
RL′cnRL′′

〈

RL′
∣

∣

∣
Q̂RL

∣

∣

∣
RL′′

〉

(41)
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in which the multipole moment operator is64

Q̂RL = r̂ℓ YL(r̂), (42)

which follows as a consequence of (39). If we expand out the matrix element ofQ̂RL

using (40) and (42) we have
〈

RL′
∣

∣

∣
Q̂RL

∣

∣

∣
RL′′

〉

=

∫

r2dr fRℓ′ fRℓ′′ r
ℓ

∫∫

dΩ YL′′ YL′ YL

= ∆ℓ′ℓ′′ℓ CL′L′′L,

which introduces new tight binding parameters,∆ℓ′ℓ′′ℓ. Selection rules which are policed
by the Gaunt coefficients (29) demand that there are only seven new parameters, or two if
one has a basis of onlys andp orbitals. These parameters are

∆011 = ∆101 = ∆spp

∆112 = ∆ppd

∆022 = ∆202 = ∆sdd

∆121 = ∆211 = ∆pdp

∆222 = ∆ddd

∆123 = ∆213 = ∆pdf

∆224 = ∆ddg.

In fact these parameters are not entirely new, but are recognisable as the elements of crystal
field theory—in the caseℓ′ = ℓ′′ they are the quantities〈rℓ〉.65, 66 So it’s perhaps not
surprising that these new parameters introducecrystal field terms into the hamiltonian.
These are off-diagonal, on-site terms that we have up to now taken to be zero. However
they are crucial in describing the bands of, for example, thetransition metal oxides as in
figure 3. The generalised Madelung energy in (38) implies that the electrons are seeing an
electrostatic potential due to the multipole moments at allthe atomic sites. Indeed, if the
electrostatic potential in the neighbourhood of the atom atsiteR is expanded into spherical
waves, we could write,

VR(r) =
∑

L

VRL r
ℓ YL(r) (43)

and using standard electrostatics theRL coefficient in this expansion is

VRL =
∑

R′L′

B̃RLR′L′ QR′L′ .

Now in the same way that we arrived at (41), using (43) we can find the matrix elements
of H ′, namely

H ′
RL′ RL′′ = UR ∆qR δL′L′′ + e2

∑

L

VRL ∆ℓ′ℓ′′ℓ CL′L′′L. (44)

Now all the ingredients of the self consistent tight bindingscheme are assembled.H0 is
given by its matrix elements, determined as in non self consistent tight binding, described
in section 3. After solving the orthogonal, or non orthogonal eigenproblem and finding
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the eigenvector expansion coefficients, you build the multipole moments and using struc-
ture constants find the components,VRL, of the potential. Having also chosen the∆ and
HubbardU parameters, elements ofH ′ are assembled and the eigenproblem is solved for
H0 +H ′. This continues until self consistency.

One or two extensions have been omitted here.

1. Onlyon-sitematrix elements ofH ′ are non zero in this self consistent scheme. In fact
in the case of a non orthogonal basis, due to the explicit appearance of bond charge
(see equation (11) and subsequent remarks) also intersite matrix elements ofH ′ are
introduced. This is important because it allows the hoppingintegrals themselves to be
affected by the redistribution of charge, as might be intuitively expected.6, 67 Details
are to be found elsewhere.5, 23

2. This scheme can be extended to admit spin polarisation in imitation of the local spin
density approximation. Thismagnetic tight binding(figure 1) has also been described
elsewhere and is omitted from these notes for brevity.23

Finally we should remark that the interatomic force is easily obtained in self consistent
tight binding. Only thefirst andthird terms in the TBBM (21) survive; in particular one
still requires the derivatives of the matrix elements ofH0. The only additional contribution
to the force comes from thefirst termin (38); there is no contribution from the second term
(or from the Stoner term in magnetic tight binding68) because of the variational principle.
Hence one requires only the classical electrostatic force on atomR,

Fes
R = −

∑

L

QRLrVRL

which is consistent with the force theorem,31–34 and repairs the inconsistency of the band
model mentioned in section 2.3.

We illustrated the self consistent polarisable ion tight binding model (SCTB) in the
study of phase transitions in ZrO2 in section 3.1. It turns out that the extension of the
point charge model to include polarisability introduces new physics that is essential in
describing these phenomena. In particular the dipole polarisation of the anions drives the
cubic to tetragonal transition. Furthermore, as seen in figure 3 the crystal field splitting
of the cationd-bands is achieved naturally and the correct ordering is reproduced in cubic
and octahedral crystal fields. Crystal field splitting is also largely responsible for the ligand
bandwidth in the low symmetry rutile structure.

4.1 Application to small molecules

Now we will turn to a second example, the application to smallmolecules. The self consis-
tent point charge model in this context and in the study of biological molecules has enjoyed
enormous success thanks in particular to the work of Frauenheim, Elstner and colleagues.69

Here we demonstrate the SCTB model applied to the question ofthe polarisability
of two small molecules, azulene and para-nitroaniline (pNA). Hopping parameters were
taken from Horsfieldet al.70 and HubbardU and∆ parameters chosen to to reproduce the
ground state dipole moments predicted by the local density approximation. For azulene it is
found that the self consistent point charge model is sufficient, but pNA cannot be described
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Figure 6. Dipole moment as a function of applied electric field calculated using LSDA, solid lines, and SCTB,
dotted lines.71 LSDA calculations were made using a molecule LMTO program.72,73 The left hand figure shows
the molecule azulene and the upper set of lines refer to the ground state and lower set to the so calledS1 ex-
cited state. The right hand figure shows p-nitroaniline; thelower set are the ground state and the upper set the
“zwitterionic” first excited state

properly without dipole polarisability.71 Figure 6 shows that the SCTB model provides a
very accurate rendering of the dipole response to an appliedelectric field compared to
LSDA calculations. We discuss now the two molecules in turn.

1. Azulene is a very interesting molecule having the same chemical formula as naptha-
lene but comprising a five and seven membered ring instead of two six membered
rings. According to Hückel’s “4n + 2 rule,” a ring molecule is especially stable if it
hasN π-electrons andN = 4n+ 2, wheren is an integer. This is because this leads
to a closed shell ofπ-electrons.74 Hence benzene is stable, havingn = 1. By a sim-
ilar argument a seven membered ring has an unpaired electronwhich can be used to
occupy an unpaired hole in a five membered ring. Hence the ground state of azulene
possesses a large dipole moment. An excited state is createdif the electron is returned
to the seven membered ring. As shown to the left of figure 6 the ground state dipole
moment is positive (the positive axis pointing to the right)while its sign is reversed in
the first excited state. Here we use a device which is not quitelegitimate, namely in
both LSDA and SCTB an electron–hole pair is created and self consistency arrived at
under this constraint. While a very crude approximation to an excited state75 (given
that LSDA is a ground state theory) this does provide a usefultest of the validity of the
SCTB model. Indeed it is quite remarkable how the SCTB faithfully reproduces the
LSDA even to the extent of accurately reproducing the polarisability of both ground
and excited states. (The polarisability is the linear response of the dipole moment to
an applied electric field, namely the slope in these figures.)

2. pNA is the archetypal “push–pull” chromophore.76 In the ground state the dipole
moment is small, but the first excited state is thought to be “zwitterionic,” meaning
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Figure 7. Charge transfer and bond current as a function of time in the relaxation of theS2 excited state in
azulene. The upper panels show the excess charge on a “bridge” atom and on the rightmost atom in the seven
membered ring (lower curve). The lower panels show theπ–bond current in the “bridge” bond.

that an electron transfers from the amine group on the right to the NO2 group at the
left increasing the dipole moment as shown on the right hand side of figure 6. Transfer
of the electron through theπ-system is called a push–pull process. Again the SCTB
faithfully reproduces the LSDA with quantitative accuracy. We should mention again
that it did not seem possible to obtain this result using a point charge self consistent
tight binding model.

4.2 Ring currents in azulene

The SCTB model provides a simple scheme for the study of electron transfer as in the
push–pull process. This is done by solving the time dependent Schrödinger equation using
the hamiltonianH including electron–electron interactions. Indeed this isprobably the
simplest quantum mechanical model that goes beyond non interacting electrons. We have
applied this approach to the relaxation of theS2 excited state in azulene with some quite
spectacular results.77
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In terms of the density operator, the time dependent Schrödinger equation is

d

dt
ρ̂ = (i~)−1 [H, ρ̂] − Γ (ρ̂− ρ̂0) .

We have added a damping term with time constantΓ−1. This allows us to prepare the
molecule in an excited state and relax it into the ground state whose density operator iŝρ0.
The equation of motion is solved numerically using a simple leapfrog algorithm. While
at the outset, the density matrix is real, during the dynamics it acquires complex matrix
elements whose imaginary parts describebond currents,18

jRR′ =
2e

~

∑

LL′

HR′L′ RL Im ρRL R′L′

which is the total current flowing from atomR to atomR′. By selecting certainL-channels
we can extract orbital contributions toj; in the present case of push–pull transfer we are
interested in the current carried by theπ-system of electrons.

Figure 7 shows results of such a simulation in azulene, usinga time constantΓ−1 =
500 fs. Examine first the lower curve in the upper left panel. Thisis the excess total
charge on the rightmost atom in the seven membered ring (see the inset in the top left
panel). In the excited state, the dipole moment points to theleft, that is, there is excess
charge on this atom which transfers through theπ-system to the left as the molecule relaxes
into the ground state for which the dipole moment has opposite sign. The curve clearly
show a smooth transfer of charge away from this site. Howeversuperimposed upon this
is a series of oscillatory excursions in charge transfer, shown in a narrow time window
by the lower curve in the upper right panel. Accompanying these oscillations are much
larger fluctuations in the charge on the upper atom belongingto the “bridge” bond which
is shared by both the five and seven membered rings. This excess charge is plotted in
the upper curves of the upper left and right hand panels. As the upper and lower left
hand panels show these oscillations die away, but analysis shows a quite characteristic
frequency as seen in the right hand panels. The lower two panels show theπ-bond current
in the “bridge” bond. What is happening here is the setting upof ring currents in both
rings whose directions are alternating with a period of a fewfemtoseconds. The ring
currents at any one time are travelling in opposite senses inthe two rings. This phenomena
is a consequence of the electron–electron interaction, as we can verify by repeating the
calculations using the non interacting hamiltonian,H0. Because two bonds enter each
bridge atom but only one leaves, the opposing sense of the currents means that charge will
accumulate on one of these atoms to the point at which the Coulomb repulsion (described
by the HubbardU ) resists further current flow and indeed reverses its direction. Note that
each current reversal (lower right panel) is mirrored by thealternating charge transfer on
the bridge atoms (upper right panel). It is not yet understood what fixes the frequency at
which the reversal happens or what it is that makes the molecule particularly susceptible
to this instability. We note that these ring currents require a long lead-in time, on the order
of the time constant, to become established and this is probably because the symmetry
breaking comes about through numerical round-off in the computer. In a more detailed
simulation coupling the electrons to the molecular vibrations,78 this symmetry breaking
will derive from the coupling. We can confirm that the great majority of the current is
indeed carried by theπ-electron system.
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5 Last Word

The intention here has been to provide a practical introduction to the tight binding method
and to motivate students to try it for themselves. While thisis a long article it is mostly
conspicuous for what is missing, rather than what is included. This is not surprising in
view of the vast literature and considerable age of the tightbinding approximation, but
I’ve tried to bring out issues that are less widely discussedelsewhere. Regrettably no
connection has been made to the semi empirical approaches inquantum chemistry that bear
a close resemblance. This reflects the fact that physicists and chemists frequently discover
the same science independently and often without much awareness of each other’s work.
I hope that some of the most glaring omissions will be coveredby other authors in this
volume.8, 79

Appendix

Real spherical harmonics are described in ref [64]. One takes the conventional, complex
spherical harmonics80 and makes linear combinations to get the real and imaginary parts.81

Instead ofm running from−ℓ to ℓ, m now runs from0 to ℓ but for eachm > 0, there
are two real functions:Y c

ℓm which is(−1)m
√

2 times the real part ofYℓm ; andY s
ℓm which

is (−1)m
√

2 times the imaginary part ofYℓm. Form = 0, Yℓm is anyway real, so we
throw awayY s

ℓ0. We end up with the same number of functions, properly orthonormal.
Specifically,

Y c
ℓm = (−1)m 1√

2

(

Yℓm + Ȳℓm

)

Y s
ℓm = (−1)m 1

i
√

2

(

Yℓm − Ȳℓm

)

.
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