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MSE307 Unit 6—Outline of thermodynamics (A.T.Paxton)

1. Closed systems
1.1 State functions

All thermodynamic thinking begins with a definition of the portion
of the universe under study, i.e., the system.

John O’M. Bockris

I will not start right at the beginning but I will try and introduce what we will need in
thermodynamics using just what you have already learned about the first and second
laws.

The first law states that for a “closed” system changes in the heat content and the
amount of work done on the system amount to a change in internal energy† written as

dU = δq + δw (1.1)

If this is combined with the second law then this becomes

dU = TdS − p dV (1.2)

This is true as long as the only work done involves a change in volume, V , against an
external pressure, p. The absolute temperature is T and S is the entropy. A closed
system is one that does not exchange matter with its surroundings (although it may
transfer heat). We will come on to open systems in a while.

Before that, we note that (1.2) is a complete statement of the combined first and second
laws for a closed system if only pV -work is done. ‡ However it may not be the most
convenient. For example, we may like to simplify things by doing experiments so that
one of the two terms on the right hand side of (1.1) is zero. So if we want to know just
the result of the system doing some work, then working with the internal energy as a
function of entropy and volume, U(S, V ), requires us to do experiments adiabatically,
that is under the condition δq = 0, and this is not very easy.

† From a mechanical point of view we often state that the total energy of a body, say a sphere of

Cu–Ni alloy, is equal to its potential energy, Epot, if it’s in a gravitational field, say, plus its kinetic

energy, Ekin, if it’s moving relative to some inertial frame. This neglects the internal state of the body,

that is to say, what its atoms are doing and whether any diffusion, phase transformations or chemical

reactions are taking place, whether it is expanding or getting hotter or colder. So in thermodynamics as

opposed to mechanics we express the total energy as Etot = Epot +Ekin +U and since thermodynamics

concerns only changes in total energy we consider systems for which the potential and kinetic energies

are unchanging, for example that the body is not in motion, and focus purely on the internal energy.
‡ We have to extend this in cases where there is surface tension, non uniform stress, changes in electric

or magnetic state and so on. For example work done on a body by a non hydrostatic stress is σijdεij ,

or work done on a body by increasing the area, A, of an internal interface of energy γ per unit area

(say between the ferrite and austenite phases in steel) is γdA.
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So without making any additional postulates we devise a number of auxilliary functions.
These are,

enthalpy, H = U + pV

Helmholtz function, F = U − TS
Gibbs function, G = H − TS

G is also known as the free enthalpy or Gibbs free energy; F is also known as the free
energy or Helmholtz free energy. We are most interested in the Gibbs function so I’ll
show you how we get it from equation (1.2). We do it in two steps. First we have that
U is a function of S and V as indicated by (1.2). Can we find an auxilliary function
that depends on T and V instead? What is the relation between T and S? From (1.2)
we have

T =

(
∂U

∂S

)
V

We say that S and T are “conjugate variables”, and we invent the new function

F = U − TS (1.3)

that is, the first function, U , take away the product of the two conjugate variables (the
one we are trying to get rid of and replace with the other). Now by taking the total
derivative (that means, asking what does a change in F result in?)

dF = dU − d(TS) = dU − TdS − SdT

= −SdT − pdV (1.4)

using (1.2). Now we have a function F which depends on T and V rather than U which
depends on S and V so that we can more readily interpret experiments done at constant
volume or constant temperature. Suppose we are working at constant pressure rather
than constant volume, then we need yet another auxilliary function, which we obtain
from F by replacing the variable V with its conjugate −p. Indeed we know from (1.4)
that

p = −
(
∂F

∂V

)
T

so −p and V are conjugate variables, meaning that I can find a function that depends
on p and T by writing down

G = F + pV

( = H − TS) (1.5)

(the original function take away the product of the two conjugate variables†). Then
similar to before,

dG = dF + pdV + V dp

= dU − TdS − SdT + pdV + V dp

= TdS − pdV − TdS − SdT + pdV + V dp

= −SdT + V dp (1.6)

† In mathematics, this is called a Legendre transformation. Note that for a pair of conjugate variables,

one is intensive and the other extensive.
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and is thereby shown to be the required auxilliary function of T and p.

1.2 Conditions for equilibrium in closed systems

According to the second law, in an isolated system (one that can exchange neither matter
nor energy with the environment) if any change takes place it must be such that the
entropy increases or remains constant,†

dS ≥ 0

Strictly in thermodynamics when we write

d(something)

we really mean
d(something)

dt

but we accept that the “arrow of time” always runs in the positive direction even if we
don’t quite understand why and we leave out the dt denominator. If the isolated system
is made up of one or more parts then we have∑

m

dSm ≥ 0

each part being labelled by a subscript m. So some part may suffer a decrease in entropy
as long as the total entropy does not decrease. So we can think of a closed system as
an isolated system made up of two parts—the part we are interested in (say, a block of
alloy) and a large reservoir of heat at a fixed temperature T . In this way we can keep
our body at constant temperature if it is kept in contact with the reservoir. So if the
entropy of our body is S and that of the reservoir is Sr then, for a natural process,

dS + dSr ≥ 0 (1.7)

Now for an infinitesimal change in heat content of the body, δq, at a temperature T ,
the change in entropy is δq/T ; ‡ this means that the change in entropy of the reservoir
where the heat came from is dSr = −δq/T (because that amount of heat has been taken
out of the reservoir at constant temperature T ) and so putting this into (1.7) the second
law has it that

dS − δq

T
≥ 0

† We believe that the Universe is an isolated system, hence the famous statement of Rudolf Clausius, Die

Energie der Welt ist konstant. Die Entropie der Welt strebt einem Maximum zu: The energy of the

world is constant. The entropy of the world is striving to a maximum. This will of course lead to the

“heat death” of the universe, but don’t worry the sun will have grown into a red giant and swallowed

the earth by then.
‡ You can think of this as the definition of entropy if you like: if an infinitesimal quantity of heat, δq, is

added to a body reversibly and at constant temperature T , then the body’s entropy increases by the

amount δq/T .
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Now using (1.2) we have

dS − dU − δw
T

≥ 0

I multiply through by T , rearrange and note that since this change is at constant tem-
perature d(U − TS) = dU − TdS and I get

d(U − TS) ≤ δw (1.8)

By comparison with (1.3) we have dF ≤ δw so that if the body does work (δw < 0)
then the Helmholtz function may increase, but otherwise and especially if no work is
done either by or on the body, then the Helmholtz function can only decrease during a
natural change, or remain constant. Thus when all changes have happened and the body
is in equilibrium then the Helmholtz free energy is at a minimum. This is a condition
for equilibrium.

I can add d(pV ) to both sides of equation (1.8) and I get

d(U + pV − TS) = dG ≤ δw + d(pV )

If as well as working at constant temperature, my body is maintained under a constant
external pressure, p, then d(pV ) = pdV and so if I define δw′ = δw + pdV as the
work done not including work done, pdV , by the body against the external pressure†

then the condition for equilibrium is that the Gibbs free energy of a body at constant
temperature and pressure is a minimum if no work other than that either against or by
the external pressure is done either on or by the body,

dG ≤ δw′ in a closed system

If no such work is done (δw′ = 0) then dG ≤ 0 in which case the Gibbs free energy can
only decrease or remain constant. This means that when all changes have happened
that are going to happen the system is in equilibrium and G is a minimum, dG = 0.
This is the condition for equilibrium of a closed system at constant temperature and
pressure.

In metallurgy when we deal with solids the amount of work done say by the thermal
expansion of a body against atmospheric pressure is so tiny as to be negligible, and we
can regard the Helmholtz and Gibbs functions to be interchangeable and both minimal
at equilibrium; but since we usually work at constant pressure and not constant volume
the focus is always on the Gibbs free energy.

† In these notes δw is the work done on the body, not the work done by the body. The latter convention

is commonly used by engineers who are interested in, say, an internal combustion engine for which pdV

is the work done by the explosion of a fuel moving a piston against the external pressure p. So for

us, if the body does work against the external pressure then the work done on the body is −pdV . So

δw′ = δw − (−pdV ) = δw + pdV .
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2. Open systems, chemical potential

An “open” system, such as the lump of metal that we have been thinking about, can
exchange both energy and matter with its surroundings. Under these circumstances we
must modify our statement of the combined first and second laws (1.2). We have to
ask about the chemical composition of our body and to identify how many different
“components” it is made up from. It is sufficient for our purposes to identify each
chemical element as one of the components, so that for example a piece of Cu–Ni alloy
has two components. In addition to components the body may be divided into phases.
For example a piece of Fe–C alloy at equilibrium within the α+γ field of the Fe–C phase
diagram may have a certain volume fraction of ferrite, having a very small concentration
of carbon and a certain volume fraction of austentite with a much larger concentration
of dissolved carbon. These two phases will be intimately in contact sharing one or more
interfaces which divide the body into its phases. For now we consider a homogeneous,
single phase body having N components and we will use a subscript i to label these
in our mathematical formulas. The internal energy is now no longer a function of only
the two variables S and V it is also a function of the number of moles,† ni, of each
component that currently make up the body,

U = U(S, V, n1, n2 · · ·nN )

The total differential of the internal energy is, now,

dU =

(
∂U

∂S

)
V,ni

dS +

(
∂U

∂V

)
S,ni

dV +
N∑
i=1

(
∂U

∂ni

)
S,V,nj 6=i

dni (2.1)

In the case of constant composition, this is obviously still valid, and so from (1.2)(
∂U

∂S

)
V,ni

= T (2.2)

and (
∂U

∂V

)
S,ni

= −p (2.3)

We now define the chemical potential of component i as the term under the sumation
sign in (2.1)

µi =

(
∂U

∂ni

)
S,V,nj 6=i

(2.4)

and here the partial derivative is taken of U with respect to the number of moles of
component i while keeping all other variables constant: namely the volume and entropy

† If you’re a physicist you tend to think in terms of the number of particles or number of atoms of each

component, but since we deal with macroscopically sized bodies, in metallurgy and chemistry we use

the number of moles to keep the numbers of reasonable size. A mole is nothing other than an Avogadro

number of objects and the Avogadro number is NA = 6.023 × 1023. Physicists use the Boltzmann

constant, kB , while we use the gas constant R = NAkB .
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and the numbers of moles of all the other components. You might ask how can I do this in
practice? The answer is to imagine that to the body in question you take an infinitesimal
number of moles of component i (from a reservoir in which its chemical potential has
some standard value—more on that later) and add it to the body. While the body’s
volume necessarily changes you readjust that by application of an infinitesimal increase
in pressure. Since the added quantity of matter may bring with it some heat, to ensure
that the entropy doesn’t change in this process it is necessary then to remove that heat,
say by placing it in contact with a heat bath at the appropriate temperature.

Maybe you’d like to think of the chemical potential as the reversible work done in
bringing an infinitesimal amount of matter from a reservoir to the body in question.
Sometimes I like the analogy with electrostatics; the electric potential is the work done
in taking a positive test charge from infinity (the reservoir) to a place in space where
there is an electric field—that is, the influence of other charges. Loosely speaking if the
electric potential is large and negative then positive charges are attracted to that place
and the work done in bringing the test charge from infinity is negative; conversely, if
the electric potential φ(r) is positive at position r, then I need to do work to bring in
extra positive charges. In this vein if the chemical potential of, say, carbon in Fe–C is
large and positive then I need to expend energy to increase its concentration. If the
concentration, or rather the chemical potential, of C in Fe varies from place to place
then if the carbon is mobile it will diffuse from regions of high chemical potential to
regions of low chemical potential. This is rather obvious if we equate chemical potential
with concentration. Later we’ll see how these two are actually related. Whereas in
standard diffusion theory you are told that the carbon will travel down a concentration
gradient, to be properly precise you should say that if diffuses down the gradient in
chemical potential.

In view of equations (2.1)–(2.4) we have for the total differential of the internal energy
of a body,

dU = TdS − pdV +
N∑
i=1

µidni (2.5)

which is the modification of the combined first and second laws (1.2) for the case of an
open system.

Now let me begin this argument again, but this time starting with the modification of
the Gibbs function (1.5) for an open system. The Gibbs free energy is a function of
temperature, pressure and the numbers of moles of each of the components,

G = G(T, p, n1, n2 · · ·nN )

and so its total differential is

dG =

(
∂G

∂T

)
p,ni

dT +

(
∂G

∂p

)
T,ni

dp+
N∑
i=1

(
∂G

∂ni

)
T,p,nj 6=i

dni (2.6)

We now define the chemical potential of component i as

µi =

(
∂G

∂ni

)
T,p,nj 6=i

(2.7)
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and (2.6) being still valid in the special case of all the dni being zero (that is, fixed
composition) equation (1.6) gives(

∂G

∂T

)
p,ni

= −S ;

(
∂G

∂p

)
T,ni

= V (2.8)

which when put into (2.6) results in

dG = −SdT + V dp+
N∑
i=1

µidni (2.9)

with µi defined by equation (2.7). This is the modification of (1.6) for an open system.
Have I now made two different definitions of the chemical potential? That would be a real
mess. Well, luckily, no! If I add to both sides of (2.5) the quantity d(pV −TS) then this
equation is transformed into equation (2.9) by virtue of the fact that G = U +pV −TS.

We will use equation (2.7) as our expression for the chemical potential (numerically it
is identical to (2.4), but we are concerned in metallurgy with the Gibbs function whose
independent variables are p and T which are easily controlled—it’s not easy to measure
let alone control the entropy!). In the case of there being a single component then the
chemical potential is the “partial free energy per mole”. Usually for all extensive state
functions we define a partial amount, being the amount per mole. We use lower case
for these. In this way, we have for a single component homogeneous body,

partial molar volume, v = V/n

partial molar enthalpy, h = H/n

partial molar free energy, f = F/n

partial molar free enthalpy, g = G/n

Equation (2.7) is the more general expression of the partial free enthalpy of component i
when it finds itself in a body having mole numbers n1, n2, · · ·nN .

Finally in this section let’s find a way to express the total Gibbs free energy of a
body in terms of the mole numbers and chemical potentials of the components, equa-
tion (2.10) below. Now, the Gibbs free energy is an extensive property so if I know
G(T, p, n1, n2 · · ·nN ) for a body and then I assemble some number λ of these bodies
together then p and T do not change as these are intensive properties and the mole
numbers are all multiplied by λ and the total Gibbs free energy is also multiplied by λ
(because it is an extensive property),

G(T, p, λn1, λn2, · · ·λnN ) = λG(T, p, n1, n2 · · ·nN )

(actually λ does not need to be a whole number—if I extend the body by an amount λ
then the free energy is increased in the same ratio). We now invoke Euler’s theorem for
homogeneous functions of first order. Suppose a function f of N variables satisfies

f(λx1, λx2, · · ·λxN ) = λf(x1, x2, · · ·xN )
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We first exchange left and right hand sides and write ui = λxi

λf(x1, x2, · · ·xN ) = f(u1, u2, · · ·uN )

then differentiate each side with respect to λ, using the rule for differentiating a function
of a function for the right hand side,

f(x1, x2, · · ·xN ) =
N∑
i=1

∂f

∂ui

dui
dλ

=
N∑
i=1

∂f

∂ui
xi

=
N∑
i=1

1

λ

∂f

∂xi
xi

This is true for any λ but if I choose λ = 1 then I get

f(x1, x2, · · ·xN ) =
N∑
i=1

∂f

∂xi
xi

This is Euler’s theorem which I now apply to the Gibbs function,

G(T, p, n1, n2 · · ·nN ) =
N∑
i=1

(
∂G

∂ni

)
T,p,nj 6=i

ni

and by comparison with (2.7) I get

G =
N∑
i=1

µi ni (2.10)

This states that the total free energy of a phase having N components is equal to the
sum of the number of moles of each component times its chemical potential.

From this I can obtain the famous Gibbs-Duhem equation. If I take the total differential
of (2.10),

dG =
N∑
i=1

µi dni +
N∑
i=1

ni dµi

and if I compare this with (2.9) there results

−SdT + V dp−
N∑
i=1

ni dµi = 0

This is the Gibbs-Duhem equation which you can use to prove the Gibbs phase rule
which is central to the interpretation of phase diagrams (but for brevity I’ll leave that
out of these notes). At constant T and p, we then find

N∑
i=1

ni dµi = 0 (2.11)
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2.1 Conditions for equilibrium in open systems

Possibly the most significant statement in metallurgical thermodynamics that you need
to remember is this, in equilibrium the chemical potential of each component is the same
in all phases. That is to say, if the body comprises more than one phase (and we will
label the phases with subscripts α, β, . . . ) and the components are distributed among
the phases so that the number of moles of component i in phase α is niα, then as long as
the phases are in contact and each component can diffuse throughout the body, then at
equilibrium the chemical potential µi for component i is the same in each phase. This
makes sense because it implies that if the chemical potential of component i is the same
everywhere then there’s no gradient to drive diffusion and so all atoms stay where they
are—equilibrium is reached. For example a piece of Fe–C alloy at equilibrium within the
α+γ field of the Fe–C phase diagram has a particular volume fraction of ferrite, having
a very small concentration of carbon and a certain volume fraction of austentite with a
large concentration of dissolved carbon. The concentrations of C in the two phases is
very different because of the big difference in solubility of C in α-Fe and γ-Fe, but in
equilbrium µCα = µC γ—the chemical potential of carbon is the same everywhere.

For the curious, I will try and prove this for you. Suppose in a multiphase, multicom-
ponent body I take an infinitesimal amount of component i, dniα, from phase α and
transfer it reversibly into phase β. † The amount of increase of component i in the β
phase is, rather obviously, dniβ = dniα while the change of mole number of component
i in phase α is negative viz., −dniα. If I do this at constant temperature and pressure,
then according to equation (2.9) the change in Gibbs free energy is

dG = −µiαdniα + µiβdniβ = (µiβ − µiα)dniα

since (2.9) must hold separately in each phase as each phase may be regarded as an
open system and a part of the whole body. If the system was originally in equilibrium
and the transfer is done reversibly then

dG = 0 = (µiβ − µiα)dniα

and so, since dniα 6= 0, it must be true that

µiα = µiβ

† For example I could have some Fe–C at the temperature at which austenite and ferrite are in equilibrium

(at the “no name” line in the Fe–C phase diagram). Then keeping T , p and the carbon concentrations

fixed, I could take dnFeα moles of body centred cubic Fe (ferrite) and transfer them across the α / γ

interface and rearrange them into the face centred cubic austenite. Alternatively I could reversibly move

the α / γ interface in such a way that dnFeα moles of ferrite are rearranged into austenite. Actually

there is a complication in this thought experiment because once I have transformed some ferrite into

austenite I will have to also transfer an amount of carbon so that the austenite retains the carbon

concentration appropriate to the tie line in the phase diagram; I gloss over this somewhat here, but as

long as the amount I am transferring is infinitesimal in the sense of the differential calculus then I can

neglect the need to re-equilibrate the carbon in this process.
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if the two phases are in equilibrium. We can extend this argument to any number of
phases.

3. Activity

Next, we need to know how does the chemical potential relate to the concentration.
Obviously we design and process metal alloys using concentrations of the components but
as we have seen what controls the thermodynamics and the kinetics at the fundamental
level is the chemical potential. The best way to start this is simply to write down the
answer. The chemical potential of component i in a particular phase (I’ll leave out the
subscript α unless it’s needed) is

µi = µ◦i +RT ln ai (3.1)

µ◦i is the chemical potential in some “standard state” (mathematically it’s an integration
constant) and depends only on temperature and pressure; and a is the “activity”. Where
does this equation come from? At the most shallow level it’s simply a definition of
activity, and still we need to find the connection between activity, ai and concentration,
xi. This is most generally expressed like this,

ai = γixi

which may be a very complicated function since the so called “activity coefficient” γi is
a function of the concentrations of all the components, not just component i,

γi = γi(x1, x2, · · ·xN )

Thermodynamics can tell us nothing about how the activity depends on the concentra-
tions. Ultimately it is up to experiment or detailed atomic-scale theory to determine
the relationship. For example, it follows from the Gibbs-Helmholtz equation that†

R

(
∂ ln γi
∂(1/T )

)
p,nj 6=i

= hi − h◦i (3.2)

where h◦i is the partial molar enthalpy in the same standard state as is applied to µ◦i .
For an ideal solution, γ = constant and so the left hand side is zero, implying that
the enthalpy of the component in solution is the same as in the pure substance at the
same T and p, if the pure substance standard state is used. By integration of the

† Combine (1.5) with (2.8),

G = H + T

(
∂G

∂T

)
p,ni

which can be recast as follows, (
∂(G/T )

∂T

)
p,ni

= − H
T 2

which is the Gibbs-Helmholtz equation. Just divide G and H by the number of moles and insert (3.1)

with ai = γixi to get (3.2).
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Gibbs-Helmholtz equation, activity coefficients can be inferred from measured heats of
solution.

The results of such experiments are shown in figure 1. You can see that the activity
does not at all show a straightforward relationship to the concentration, except to say
that as the concentration increases so does the activity. However you see two very clear
limits: for large concentrations we see that

ai = xi (xi → 1)

meaning that in the concentrated limit the activity of the solvent is equal to its concen-
tration, the activity coefficient being one; and

ai = γixi (xi → 0)

with γi constant, that is, in the dilute limit the activity of the solute is proportional to its
concentration. In this limit the activity coefficient is a proportionality constant. These
two limits are the metallurgical statements of, respectively, Raoult’s law and Henry’s
law (first stated to refer to the partial pressures of gasses).

Figure 1. Activity for some liquid binary alloys as functions of
concentration. The left hand figure shows a positive deviation from
Raoult’s law and the right hand figure shows negative deviation.
When the concentration of a component tends to one we then call
this component the solvent for obvious reasons.

In solid solutions with positive deviation, ai > xi, the solute behaves as if it were in a
greater concentration than it actually is, and vice versa. Equation (3.2) indicates that
if ai > xi (activity coefficient greater than one) then the mixing of the solute in the
solvent is endothermic, meaning that the solute doesn’t want to form a solid solution
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and the mixture has a tendency to phase separation or possibly spinodal decomposition.
Conversely if γi < 1 then the mixing is exothermic, very roughly meaning that the
component i likes to form bonds with the atoms of the solvent.

Incidentally a consequence of the Gibbs-Duhem equation (2.11) is that

N∑
i=1

xi d ln ai = 0

This can often be used to find the activity of one component if the activity of the others
is known.

3.1 Ideal mixture

The “ideal mixture” or ideal solution, or ideal solid solution, like the ideal gas, is an
idealisation but which fits the facts in many cases. They are characterised by a special
form of the entropy of mixing, namely this: if the two components are intially separated
into two containers and subsequently allowed to mix at constant temperature then the
change in entropy is

∆S = R

N∑
i=1

ni ln
n

ni
(3.3)

= R

(
n lnn−

N∑
i=1

ni lnni

)

Here, n is the total number of moles and ni is the number of moles of component i. For
an ideal gas, we have from the ideal gas law (Dalton’s Law) that n/ni = p/pi where p
is the total pressure and pi is the partial pressure of component i. So you can define
the ideal solution as one whose entropy of mixing is taken by analogy with the ideal
gas. You can see (3.3) derived in a textbook on thermodynamics (look up “Gibbs’s
paradox”).†

† In the case of a binary mixture you can derive (3.3) from a statistical point of view. If the N atoms are
arranged on the lattices of two perfect crystals then the number of ways of arranging the atoms into
two separated bodies is exactly one. When the atoms are randomly mixed on a common lattice in the
alloy body then the number of ways of arranging the Na A-atoms and the Nb B-atoms is

W =
(Na +Nb)!

Na!Nb!
=

N !

Na!Nb!

So from the Boltzmann formula for the entropy, S = kB lnW the entropy of mixing is

∆S = kB ln
W

one
= kB (lnN !− lnNa!− lnNb!)

= −kB
(
Na ln

Na

N
−Nb ln

Nb

N

)
using Sterling’s approximation lnx! ≈ x lnx− x for large x, and this is consistent with (3.3).
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So when I take ni moles of each of N components in the pure state at a given temperature
and pressure, and I mix them to produce an ideal homogeneous single phase mixture of
atoms, then the total Gibbs free energy of the body that I have created is the sum of the
numbers of moles times the molar free energies, µα,0i , of the pure substances in phase α
plus the free enthalpy of mixing which is −T∆S since the solution is ideal. Hence, see
equation (4.1) below,

G(T, p) =
N∑
i=1

ni

(
µα,0i (T, p)−RT ln

n

ni

)

By comparison with equation (2.10) I see that the chemical potential of component i in
the ideal mixture is

µi = µα,0i (T, p) +RT ln
ni
n

= µ◦ +RT ln
ni
n

(3.4)

so that µ◦ is the chemical potential of component i in its reference state: that is, in
the pure substance in phase α (presumably but not necessarily the crystal structure
adopted by the pure substance) at the temperature and pressure specified. So you can
at least see where the structure of (3.1) comes from: xi is ni/n and we replace xi with
ai to recognise that not all mixtures are ideal in real life. In the case of the ideal gas it
is usual, as you may know, to write

µ = µ̄+RT ln p

where µ̄ is the chemical potential in the standard state of one bar pressure and temper-
ature in question, and the pressure p is measured in units of one bar.

3.2 Non ideal mixture

After (3.4) you saw that ni/n = xi the concentration of component i in the mixture.†

So equation (3.4) is that same as (3.1) for the case that the activity coefficient is one at
all concentrations,

γi = 1 ←− ideal solution

† When I use xi for concentration I mean the ratio of the number of moles or number of atoms of
component i to the total number of moles or number of atoms in the mixture. If I write for the
concentration ci then I mean the number of moles per unit volume. I hope it doesn’t confuse you
that I use the word concentration for both. Probably for xi I should write “mole fraction,” or “atom
fraction.” The relation between the two is

ci
xi

=
ρ (n0 +

∑
ni)

M0n0 +
∑
Mini

Here we imagine a number of solutes i dissolved in a solvent, labelled with the subscript 0; ρ is the

density in kg m−3 and M is the molar mass in kg mole−1 (easily confused with relative molar mass

which is one thousand times smaller).
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The reason that we write for the chemical potential for component i in a mixture,

µi = µ◦i +RT ln γixi = µ◦i +RT ln ai (3.5)

is firstly that it has the familiar mathematical form as for the ideal solution and secondly
that in certain limiting cases the dependence of γi on xi is especially simple (figure 1).
For example it is known experimentally and is also intutitively reasonable on physical
grounds that in the case that the concentration tends to one, that is in the limit that
the mixture tends to pure component i, γi tends to one, and

µi = µ◦i +RT ln γixi → µi = µ◦i +RT lnxi︸ ︷︷ ︸
Raoult’s law

(xi → 1) (3.6)

At xi = 1, the last term is zero (log 1 = 0) and so µi = µ◦i which identifies µ◦i as the
chemical potential of pure substance i at the temperature and pressure of interest.

At the dilute limit, xi → 0, the activity coefficient becomes a constant, independent of
concentration.†

µi = µ◦i +RT ln γixi , γi constant︸ ︷︷ ︸
Henry’s law

(xi → 0) (3.7)

In between these limits the activity coefficient generally has a complicated dependence
on the concentration of i (Figure 1) and indeed all the other components. On the other
hand µ◦i depends only on temperature and pressure.

Note that figure 1 concerns liquid mixtures, not solids. Figures 2 and 3 show some
measurements very relevant to us of the carbon activity in pure austenite and Fe-Mo
alloy.

3.3 Henrian activity

The most convenient choice of standard state is the so-called Raoultian standard
state (3.6) in which µ◦i is the free enthalpy per mole of pure substance of i. This is
the standard state chosen even in figures 2 and 3 although it poses an awkward prob-
lem. If in the case of carbon dissolved in austenite we want to write

µC γ = µ◦C γ +RT ln aC γ

and we want to focus, as in figures 2 and 3, on the dilute limit then the Raoultian
standard chemical potential has to be imagined as the free enthalpy per mole of a
fictitious substance obtained by continually increasing the concentration of carbon until
its concentration approaches one. But this thought experiment is impossible to carry

† The mathematically astute will notice that as xi goes to zero so µi goes to minus infinity. I’ll touch on

this again on page 18 in connexion with figure 5.
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out in practice. Very quickly you will exceed the solubility limit and in the limit of pure
carbon the crystal structure is no longer fcc, it must be graphite. In the case of nitrogen
the pure substance is a gas! So equation (3.6) is useful in order to be able to equate the
activity with the concentration but it leads to an unrealisable choice of standard state.
Instead we exploit Henry’s law (3.7) and after writing down the chemical potential as
in equation (3.5)

µi = µ◦i +RT ln γixi

but given that in the dilute limit γi is a constant, that depends only on temperature
and pressure we can fold it in with the standard chemical potential by writing

µi = µ◦i +RT ln γixi

= µ◦i +RT ln γi +RT lnxi

= µhi +RT lnxi

where µhi = µ◦i + RT ln γi is the chemical potential of component i in the solution in
its “Henrian standard state.” It’s best not to try and make a picture of the solute in
that state, but just think of µhi as standard chemical potential that depends only on
temperature and pressure and which allows you to equate activity with concentration,
as in (3.6), but in the opposite limit.
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Figure 2: Activity of carbon in austenite. Note a very strong pos-
itive deviation from the ideal solution (aC � xC; γC ≈ 10), and a
small positive deviation from Henry’s law (γC not constant). C in
austenite acts as if there is more there than there actually is.
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M : 8 , 8 3 3 / T -  6.290 [3] 

and 

log 7 ~ = 1,835//T - 0.399. [4] C 

Subs t i tu t ion  of Eq.  [3] and Eq. [4] in Eq. [2], y i e l d s  the 
d e s i r e d  e x p r e s s i o n  for  the ac t iv i ty  coe f f i c i en t  of c a r -  
bon, r e f e r r e d  to g r aph i t e ,  for  the  t e m p e r a t u r e  range ,  
783 to 848~ 

logTc  = (1,835//T - 0.399) + (8 ,833/T - 6 . 2 9 0 ) X c .  [5] 

The ac t iv i ty  of c a rbon  r e l a t i v e  to g r a p h i t e  i s :  

l o g a c  = (1,835//T - 0.399) + (8,833//T - 6 .290)X C 

+ l o g X  c . [6] 

Eq. [6] can be used  to obta in  the p a r t i a l  m o l a r  p r o p -  
e r t i e s  of ca rbon  in ans ten i t e ,  a s  funct ions  of t e m p e r a -  
t u r e  and ca rbon  concen t r a t ion .  Thus ,  the  p a r t i a l  m o l a r  
f r ee  energy  of so lu t ion  of ca rbon  in a u s t e n i t e  i s  given 
by: 

-~M = R T  l n a  C = 8 , 3 9 6 -  1 .83T + 40 ,418Xc  

- 28.77 T X  C + R T  l n X  C.  [7] 

The p a r t i a l  m o l a r  hea t  of so lu t ion  of c a r b o n  i s  ob-  
t a ined  f rom Eq.  [6]: 

-~M = R { d ( l n a c ) / / d ( 1 / / T ) }  = 8,396 + 4 0 , 4 1 8 X c .  [8] 

The  p a r t i a l  m o l a r  en t ropy  of so lu t ion  of c a rbon  i s  
obta ined  f rom Eq.  [7] and [8], by  the  r e l a t i o n ,  

= (-ff  -- 2 8 . 7 7 x c -  n 1.83. [9] 

Using  the s a m e  me thod  of a n a l y s i s ,  the  fo l lowing 
equat ions  a r e  ob ta ined  for  the  i r on -0 .48  wt pc t  mo lyb -  
denum a l loy:  

M = 12,836//T - 9.847 [10] 
o log ~C = 1,770//T - 0.354 [11] 

log VC = 1,770//T - 0.354 + (12,836//T - 9 .847)X C [12] 

log a C = 1,770//T - 0.354 + (12,836//T - 9 .847)X C 

+ l o g X  C [13] 

GC M = 8,099 - 1.62 T + 58,732X c - 45.06 T X  c 

+ R T  ( lnX c ) [14] 

M : 8,099 + 5 8 , 7 3 2 x c  [15] 

S-C M = 45 .06X C - R ( lnX c)  * 1.62. [16] 
The equat ions  for  the  i r o n - 1 . 1 6  wt pc t  molybdenum 

a l loy  a r e :  

M = 1 3 , 0 9 6 / T -  9.908 [17] 

log 7~ = 1,779//T - 0.382 [18] 

log 7 c  = 1,779//T - 0.382 + (13,096//T - 9 .908)X C [19] 

log a c = 1 , 7 7 9 / / T -  0.382 + (13,096/T - 9 .908)X c 

+ l o g x  c [20] 

~M = 8 , 1 4 1 -  1 .75T + 59,222X c - 4 5 . 3 4 T X  C 

+ RT ( Xc) [21] 

~ M  = 8,141 + 59,222X C [22] 

~4 = 45.34X C _ R (lnX c ) + 1.75. [23] 

The estimated uncertainties in temperature meas- 
urement (•176 gas ratio, (• pct at 848~ and • 

Table II. Values of ~M (Calories) for Austenitie Fe-C and Fe-C-Mo Alloys 

Fe- 0.48 Fe- 1.16 
Xc Fe Wt Pct Mo Wt Pct Wt Pct Mo 

0.025 9,569 9,674 9,769 
0.030 9,694 9,850 10,395 
0.035 9,845 10,559 10,298 

Average = 9,700 Average = 10,036 Average = 10,150 
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Fig. 6--Activity coefficient of carbon as a function of fraction 
of carbon for austenite and austenitic iron-carbon-molybde- 
num alloys. 

p c t  a t  682~ and weight  change m e a s u r e m e n t  (• pct)  
have  been  conver t ed  to c o r r e s p o n d i n g  u n c e r t a i n t i e s  
in the  ca l cu l a t ed  t h e r m o d y n a m i c  funct ions .  The e s -  
t i m a t e d  e r r o r  in ca rbon  a c t i v i t y  i s  • at  848~ 
and • at  783~ The e s t i m a t e d  e r r o r  in ~M is  
then • cab /mole  and in ~E i s  • cab/K.  

In addi t ion ,  the ef fec t  of molybdenum can a l so  be 
s tud ied  by use  of the f i r s t  o r d e r  f r ee  ene rgy  i n t e r a c -  
t ion  coeff ic ient ,  e M~ . F i g s .  6, 7 and 8 a r e  p e r t i n e n t  to 
th i s  ca lcu la t ion .  The va lue s  of the i n t e r c e p t s  f r o m  
F i g .  6 (log ~ ), a r e  p lo t ted  a ga in s t  the a tom f r a c t i o n  
of molybdenum (XMo) in  F ig .  7. The  r e l a t i o n s h i p  i s  
l i n e a r ,  and the s lopes  of the  l ines  a r e  p lo t ted  a g a i n s t  
the  r e c i p r o c a l  of the abso lu t e  t e m p e r a t u r e  in F ig .  8. 
The  equat ion of the l ine in F ig .  8 i s :  

5(log ~ )/6(XMo) = 6.534 -- 12,800//T. [24] 

F r o m  th i s  equation,  the v a l u e s  of the f r e e  ene rgy  in-  
t e r a c t i o n  coeff ic ient  a r e  - 11.3, - 1 2 . 1  and - 12.9, 
a t  848~ 813~ and 783~ r e s p e c t i v e l y .  

The  a v e r a g e  va lue  of the  hea t  of so lu t ion  of c a rbon  
in ans t en i t e  obta ined f r o m  th i s  inves t iga t ion  (9610 ca l  
f r o m  Eq. [8] and 9700 ca l  f r om the e x p e r i m e n t a l  data) ,  

1 3 6 2 - V O L U M E  7A, SEPTEMBER 1976 M E T A L L U R G I C A L  TRANSACTIONS A 

Figure 3: Activity coefficient of carbon in austenite. Note that even
at this very low concentration, Henry’s law does not hold as γC is
clearly not constant.

4. Solid solutions

We consider here a binary A–B solid solution and ask what is its free enthalpy per mole
in the α-phase, gα, compared to the free enthalpies of the numbers of moles of A and B
in their pure states in the same α phase as the solid solution.† If gα is smaller than the
sum of the two pure state free enthalpies per mole, weighted by the mole fractions, then
the two pure phases will tend to form a solid solution in equilibrium. Relative to some
arbitrary zero of energy these pure substance free enthalpies per mole are µα,0A and µα,0B .
So if a mole of solid A–B solution is made of x moles of B and 1− x moles of A then

gα = (1− x)µα,0A + xµα,0B + ∆mixgα (4.1)

and ∆mixgα is the free enthalpy of mixing or free enthalpy of formation of the A1−xBx

alloy measured from the standard state of the pure, unmixed A and B components.
Figure 4 is a schematic illustration of this, showing the free enthalpy per mole of a

† This may be problematic if either A or B or both do not actually exist in the phase α of the solid

solution in question. For example we may be interested in a bcc Mg–Li alloy in which case since Mg

does not exist in a bcc modification, the quantity µbcc,0
Mg is unknown.
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binary solid solution as a function of the composition at a particular temperature and
pressure.

Figure 4

You can see from figure 4 that the free energy is everwhere smaller that the weighted
sum of the free energies of the two components. This is because in the case sketched
here the free enthalpy of mixing is negative for every concentration. In the case of an
ideal solution, we would have

∆mixg = RT {(1− x) ln (1− x) + x lnx} ←− ideal solution (4.2)

which is negative since 0 < x < 1. This means that for all concentrations the free
enthalpy is reduced if the two components mix together rather than remaining as pure A
and pure B phases. As long a gα has positive curvature then the two substances A and B
will form a single phase solid solution. On the other hand if gα has a negative curvature,
within the so called spinodal which is indicated as lying between concentrations at
points S and S ′ in figure 4, then the single phase solid solution can further lower its
free energy by separating into two phases, namely α-solid solutions (that is, the same
crystal structure) but having concentrations given by the ends of the common tangent
to the gα curve. If these concentrations are x1 and x2 then since the slope is common,

∂gα

∂x

∣∣∣∣
x=x1

=
∂gα

∂x

∣∣∣∣
x=x2

=
gα(x2)− gα(x1)

x2 − x1
(4.3)

(The notation of a vertical bar means evaluate the derivative at x = x1 etc.) Actually
the slope of the straight line joining µα,0A with µα,0B is arbitrary in the sense that absolute
values of µα,0A and µα,0B depend on the choice of energy zero as discussed earlier. µα,0A and
µα,0B do depend on temperature and figure 4 is drawn for one particular temperature.
We could have chosen this to be the temperature for which µα,0A = µα,0B . This amounts
to saying that figure 4 is essentially a plot of ∆mixgα arbitrarily tilted so that the
condition (4.3) is equivalent to the statement that

∂∆mixgα

∂x

∣∣∣∣
x=x1

=
∂∆mixgα

∂x

∣∣∣∣
x=x2
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This equation gives us the limits of solubility x1 and x2. For example starting with a
dilute solid solution of component B in A, as I add more B (increase x from zero) the
equilibrium mixture is a single α phase until I reach x = x1 after which in equilibrium
there will appear a phase mixture of one solid solution of composition A1−x1Bx1 and
another of composition A1−x2Bx2 . The amounts of each will be given by the lever rule.

The hump in the free enthalpy of mixing arises from non ideality. Equation (4.2) is
sketched in figure 5 and this would not give rise to a hump. The matter of deciding
what is the enthalpy of mixing comes down to questions, roughly speaking, of whether A
atoms like to be neighbours of B atoms and at what concentrations. Thermodynamics
can tell us nothing of this and it is necessary to resort to experiment or first principles
theory to resolve the matter. It is obvious from (4.2), and should be evident in figure 5
if I’ve sketched it properly that at both x = 0 and x = 1 the slope of the ideal entropy of
mixing is infinite. This has been used in the past as an argument that a pure substance
cannot exist in equilibrium in contact with one or more other components because
the addition of just one B atom, say, to otherwise pure A is bound to lower the free
enthalpy; the one B atom having infinitely negative chemical potential. This is not an
admissible argument but nonetheless it is true that entropy effects prevent the existence
of absolutely pure substances.

Figure 5

Now we ask, what is the chemical potential, µαA, of the component A (or B) in a particular
solid solution at a particular composition, temperature and pressure. If the number of
moles of A is nA and the number of moles of B is nB and the total free enthalpy is G
then, if n = nA + nB , from (4.1)

µαA =
∂G

∂nA
= µα,0A +

∂
(
n∆mixgα

)
∂nA

and similarly for B, just by replacing A with B. From equation (2.10) it follows that

gα = (1− x)µαA + xµαB (4.4)
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therefore
∂gα

∂x
= µαB − µαA

This important relation is illustrated in figure 6. In words, at any particular composition
of a solid solution, the tangent to the free energy per mole curve intersects the x = 0
and x = 1 axes at the chemical potentials of the two components. We saw an example of
this in Unit 2C, slide 10. Figure 6 is sketched for the simpler case of a solution without
a spinodal region, but if you look back at figure 4 you see immediately that the common
tangent S–S ′ leads to the relations

µαA(x1) = µαA(x2)

µαB(x1) = µαB(x2)

which, as you know, are the conditions for equilibrium (see section 2.1).

Figure 6: For a given composition, given by the mole fraction, x,
of B-atoms, I can find the chemical potentials of A and B atoms
in the solid solution by this construction: I draw a tangent to the
curve of gα versus x that touches the curve at the concentration of
interest. Where the tangent intersects the ordinate at x = 0 and
x = 1, I read off the chemical potentials µαA and µαB , respectively.
By construction the molar free enthalpy at the concentration x is
gα = (1− x)µαA + xµαB which is equation (4.4)

The occurence of a spinodal is fairly rare, but you are aware that some solid solutions
undergo a spontaneous, second order phase transformation known as spinodal decom-
postion into two phases having the same crystal structure but separate compositions.
More common is the case of a single solid solution decomposing into two phases, α and
β, having both different crystal structures and different compositions (concentrations).†

† An example is hypoeutectoid Fe–C above A1 but below A3 which separates into two solid solutions of C

in ferrite and C in austenite with solubility limits given by the no-name line and A3 at the temperature

in question, and the volume fractions of each phase given by the tie line depending on the overall C

concentration.
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As indicated in figure 7 we now have to draw separate free energy curves for each phase
as the one does not go over continuously into the other. By analogy with (4.1) the free
enthalpy per mole of the β phase is

gβ = (1− x)µβ,0A + xµβ,0B + ∆mixgβ

The common tangent construction, as shown in figure 7, defines two concentrations xα
and xβ which are solubility limits. In other words at the given T and p of figure 7,
as I add component B to a dilute alloy, the single α phase reaches a limit of solubility
at x = xα upon which the lowest free enthalpy corresponds to a two phase mixture
of α phase of composition xα and β phase of composition xβ . Once the concentration
of B reaches xβ then a single β phase will be reverted to. In this sense xα and xβ are
solubility limits. In similar manner as equation (3.3) we can deduce these using

∂gα

∂x

∣∣∣∣
x=xα

=
∂gβ

∂x

∣∣∣∣
x=xβ

(4.5)

=
gβ(xβ)− gα(xα)

xβ − xα

You note of course that in the two phase concentration range between xα and xβ , the
slope of the molar free enthalpy is the same for both phases as you see in (4.5) or
by looking at the common tangent. This means that the chemical potentials of the
component B are the same in each phase, which is the condition for the two phases to
be in equilibrium.

Figure 7

I don’t want to take this any further; it is probably revision for you and you know
that this is the stepping off point for learning how to construct phase diagrams.
There are computer programmes that do this for you, using vast (and expensive)
databases of measured, calculated and inferred free enthalpies (see, for example,
http://www.thermocalc.com). As mentioned in the footnote on page 16 there are
severe problems in this approach if the computer needs to estimate the free enthalpy
per mole of a pure substance, or indeed alloy, in a crystal structure which is not observed
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or is not even mechanically stable. For example you may need to know the molar free
enthalpy of bcc Ti below 822◦C, or of non magnetic bcc Fe above 920◦C. There are in-
deed unresolved disputes between the electron theorists and the CALPHAD community
over such issues.
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