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Abstract

Arguments are given that lead to a formalism for calculating keadge structure in electron energy loss spectroscopy (EELS). This is
essentially ane electrorpicture, while many body effects may be introduced at different levels, such as the local density approximation to
density functional theory or the GW approximation to the electron self-energy. Calculations are made within the all electron LMTO scheme
in crystals with complex atomic and electronic structures, and these are compared with experiment.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction rangement of the remaining electrons in the crystal due to the
sudden appearance of the core hole. Strictly speaking this is
As is well known, there are features calledgesin the a two-body problem if we wish to treat both the electron and
electron energy loss spectra of solids that appear at energiesiole on an equal footing. Such an approach is necessary inthe
beyond the low loss and valence electron regions. These araliscussion of valence electron spectra in which the electron
sharp increases in the inelastic scattering intensity due to ex-and hole are rather close in energy and form a dynamically
citations of the core electrons of the atoms in the specimenbound pair, orexciton[1]. However to describe core level
into unoccupied states in the conduction band or above thespectroscopy it is sufficient to treat the effect of the core hole
Fermi level. The absolute position of the edge is a measureby the “switching on” of a static potential very suddenly as
of the smallest energy needed to eject a particular core electhe fast electron strikes the specimen foil. This is known as
tron into some unoccupied state. This must be thought of asthe sudden approximatianThe situation then reduces to a
the energy difference between the final and initial states of one electron problem as we shall see.
the specimen, since it is exactly this amount of energy thatis ~ Of much greater interest than the threshold energy itself
lost from the electron beam. In view of the very low flux in a is the structure of the spectrum above the edge that becomes
typical experiment, we may take it that the initial state is the superimposed on the uniform decaying atomic background,
quantum mechanical ground state; the final state features alue to the atomic and electronic structure of the material
core hole, the electron that occupied that state now belongingin the foil. At energies typically some tens of electron volts
to the conduction band. In an independent electron picture weabove the edge, the spectrum is usually oscillatory, and this
say that the energy loss is equal to the differencagenval- extended fine structuigives detailed information about the
uesof the (previously unoccupied) conduction band state and local atomic environment of the atom that is excited by the
the core level. However this approach may neglect any rear-incoming beam. The interpretation of this structure is rather
well developed and will not be discussed here. At energies of

* Tel.: +44 2890 975328: fax: +44 2890 975359 just a few electron volts above the edge, one findsntwr
E-mail addresstony.paxton@qub.ac.uk. edge structurewhose details reflect the electronic structure
URL: http://titus.phy.qub.ac.uk. of the specimen in the region of the foil around the excited
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atom. By comparing detailed features of the experimental formulation in terms of one electron matrix elements which
spectrum with known features of either standard specimensleads to the simplest expression for the scattered intensity as a
or those from calculations on ideal crystals EELS is used as afunction of energy losE and momentum transfég, namely

tool of very high spatial and energetic resolution to determine [5,6],

the local atomic and electronic structure of defects in crystals: _

grain boundaries, interfaces, precipitates and so on. Atypical /(0. E) ~ Y [(nk|€9"|c) |°5(E — e,k + &)

application is the measurement of thikite linein transition nk

metal Lp 3 edges in order to determine the local band filling unocc

[2]; or the determination of the oxidation state of ions at

defects in ionic crystalf3]. The subject is now sufficiently = ) IMgPPS(E — suk +50), (2.1)
far advanced that many articles have appeared that describe nk

one or other aspect of the theory. unocc

The intention here is to present the steps needed toward . . .
calculation of the neakK-edge structure in the one electron where (1| ©) =gc(r) is the core wiavefunc'gon from which
approximation. Two approaches are described. The first is thed" electron is ejectgd, and | nk) _.(p“k.(r) is the conduc-
theory of Bethe which is well known in electron microscopy t|or_1 band wavefunc_tlon, L_moccupled in the ground.state, 0
and beautifully includes both elastic and inelastic scattering which .the elgctron IS elxcm'ed. Ece.'l) has the benefit of a
in a single formula. We present it here because a derivation V" simple mterpretatlpn in the mdepende_nt electron pic-
is not easily found in the literature and we wish to find an ture. The squared matrix element is proportional to the rate

expression for the scattered intensity in terms ofcyieami- of transition from one eigenstate to another; the sum is over
cal form factorwhich is often familiar in other contexts. The all possible final states, strictly limited by the delta function

Bethe theory does not easily expose the point that the proces%.Nh'Ch ensures the conservation of energy since it is zero un-

should be describable in a one electron picture. We therefore CSSE = énk — éc. That is, the energy lost to the beam is the

obtain the one electron approximation to Bethe’s formula elgenva_lue diffe_re_nce between the two Ievel_s. We would like
again using a quite different approach due to Hedin. Our cal- 0 explain the origin of the operatdfie appearing m_the ma-
culations are then made using a particular one electron formmx element, anq to make clear how the eigenfunctions Sh.OUId
of the matrix elements, namely the local density approxima- be represented in order to account for electron—electron inter-

tion to density functional theory. However the theory of Hedin action W”h'f‘ tr?[e onde.eltiﬁtrc:jn Karpew?rk. \tNe shall altsfo s?r?w
is easily extended to the case that the one electron potentia’ﬁOW one might modify the delta function to account for the

is energy dependent and non-local and we give one examplet _nltledhf?tl_Tne ;)Lthe g]xcnedttstatz. _Fltnallytwe W'Ikl)g'velpr?ct' d
of such a calculation in NiO in which electron correlations c& G€talls of how the scattered ntensily can be calculate

are expected to be very strong. within the local density approximation to density functional

We will confine ourselves to the discussion Kfedges theory.
which are those that arise from the excitations of s-electrons
from the core; these are the only core states whose wavefunc2-1. Scattering cross-section of an isolated atom—the
tions do not have multiplet structure. To discuss p, d and f theory of Bethe
core states requires us to go beyond the usual approximation
that wavefunctions can be described in non-relativistic quan- Ve consider the case of a beam of electrons, arriving one
tum mechanics by a single Slater determinant and this takes2t @ time at the foil as dictated by the typically low flux in
us beyond the scope of the present work. Fortunately there is&n electron microscope. The electrons are scattered by atoms

a very good recent review of multiplet effedt. in the foil but they arrive and leave iplane wave states
We assume that the incident particle velocity is greater than

(2/137), whereZ is the atomic number of the atom and c is
2. Calculation of the scattered intensity the speed of light; restricting us to incident electron energies
above 122 eV. This assures that the first Born approximation
In the sudden approximation, we expect the scattered in-iS valid [7], meaning that each electron experiences just one
tensity to be rendered inane electrorapproximation. That ~ Such scattering event and permitting the use of second-order
does not preclude electron—electron interactions asimgn ~ Perturbation theory or thgolden ruleof quantum mechanics.
pendent electrompproximation in which electrons are found ~ The perturbation theory allows us to write the Hamiltonian
in states whose energies are independent of the presence dhat describes the scattering as
other electrons. Instead each electron is said to see a po-; _ '
tential that includes the effects all the other electrons; this #'= Hatom + Hetectront Hint.
potential need not be local or energy independent, althoughHgaiom is the Hamiltonian for an atom in the foil, most gen-
this is the case in density functional theory described below. erally given (in non-relativistic quantum mechanics) by Eg.
In this section we will describe two approaches that begin (A.8) (Appendix A). HelectroniS the Hamiltonian of the in-
in a many electron framework; each of which reduces to a dependent electrons in the beam, &hg is the electrostatic
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potential energy of interaction between the fast electron and scattering into any final state, but with an energy IBsis a
the nuclear and electronic charges in the atom. If we take sum over all final states, each term multiplied by an energy
it that the atom is stationary at the origin, then (in units of conserving delta function,

dreg=1) o

, Z P(a, E) = 2= p(&) 3 1f| HindlO)*S(E — Ex + Eo),

r — |r — 1|

j=1 J where[9,12]

wherer denotes the position vector of the scattered electron, v £\2 1 mk
andr; are the positions of ti@electrons in the atom. Neglect-  0(€) = W (;) ~ W? (v<o)
ing spin coordinates, the Hamiltoni&tyom has a complete 7 4
set of eigenstates)(rs, ..., rz) with eigenvalues,, of is the density per unit volume of final states of the beam.
which the ground state igg. We should point out that we If the scattering is inelastic then tffiest termin ey, van-

cannot, even in principle, determine the exact eigenstates ofishes because of orthogonality of the atomic eigenstates. Fur-
a many body Hamiltonian. However without approximation thermore the second term is a sum o¥édentical integrals

we can write the eigenstates ldfiom+ Helectronas products because if the coordinatgis exchanged for, say; in both

of a statey, and a plane wavele . If the incoming electron vy, andym the changes of sign arising from the Pauli principle
has wavevectdk and the outgoing electrdd, we definethe  cancel, hence each term can be written replacjvgth r;.
momentum transfer to the scattererhas=ii(k — k’). To ar- Hence defining theransition form factor k(q) for excitation

rive at Bethe’s expression for the scattering rate one makes aof the system to a final statg, as

Fourier transform oHj,; followed by a discrete back trans-

form [8-10]; Fo(q) = Z/ . / Y €9 1y drydry---dry,
Hipp = Z v, dar | 7 _ Z eiar | and furthermore thdynamical form factof10]
; - 2
) _ ! 8@ E)= ) IF(@) 8(E — En + Eo),
where the Fourier transform of the Coulomb potential is, in 7
unit volume{11], we finally obtain for the inelastic scattering rate,
Vo= 47'[62 21
e P(a. E) = = p(E)V;S(a. E). (22)

Because of the low incident flux we may take it that in the
initial state the atomisin its ground state and so the initial state
of Hatom+ Helectronis |0) = o €XT and the final state, finding
the atom in some excited stafs,, is |fn) =vn €K ". Then
using [ €@+9)7 dr = §(q — ') in unit volume, the matrix
element oHin; between final and initial states is

whichisinthe form of Eq(2.1). Note how in the first Born ap-
proximation the electron beam acts asom-intrusive probe
The experiment provides a measure of the fluctuations in the
unperturbed system, encaptured in the dynamical form factor.
Mathematically, this is because the beam electron coordinate
has been integrated d&f in forming the Fourier transform of
(fu|Hint|O) = —Vgeon, Hint, leaving only the coordinates of the specimen electrons
wherd and nuclei (the latter surviving ielastic scattering only).
The formula(2.2) is essentially exact; it is not clear how to

_ _ cast this into a one electron form. However the key points are

Emn = f o f Yu | Z =) %7 | ypdrydry---dry. these. (i) The initial and final states andy, are orthogonal
J eigenfunctions of the same Hamiltonidtyom. (i) We will

According to the golden ruld7,12] the probability per assume that they can be written as single Slater determinants

unit time that the electron is scattered with momentum
transfer hq leaving the atom in the eigenstatg, is )
Pon(Q) = (27/h) p(e) | (fn | Hint | 0)]2.2 Hence the probability of  into final stateyy, is [9,12] (6, ¢) = @ — (L) 2 y2)0 12 =

vo 27h2c2 vo 4
- (1 - (”—5) ﬁ “5leon|?, where€ = /1 — 12/c2mc is the energy of the out-

_1_ Bethe [8] deflnezd a dlmzensmnless 962f161’a|l5_ed transition proba-  going electron, including its mass, andvo andv are initial and final elec-
bility gmn(0) = (020) ~2lemn()|?, where ag=h?/mé is the Bohr radius tron velocities. This covers both elastic and inelastic scattering. In elastic
(~0.0529 nm) andyeneralisierte Oszillatorstke (generalised oscillator scattering,y = vo andeon =00 = (Z— F(q)), where F(q) = [ p(r) €4" dr
strength) fun(q) = E",;yE’" @mn(q), where Ry is the Rydberg unit of energy s theatomic form factorIndeed if one neglects the electronic charge alto-
€?12ag (~13.61 eV). He also proved tiesumrule 3", f..(q) = Z (see also gether E(q) — 0) one recovers the Rutherford formula for scattering by a
[10, p. 92). point chargde|Z with its characteristiqg—* dependence of the cross-section

2 It follows furthermore from the golden rule that the differential  which survives into the inelastic case. Clearly forward scattering into small
cross-section, with respect to the polar angleskof for scattering momentum transfers is greatly favoured.
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[11]. By the special properties of Slater determinants, the ma- point out here that in a bandstructure calculation, one calcu-
trix element of any one electron operator is zero if more than lates the density of states of Arelectron system which is in

one of the entries is different. Indeed if principle not measurable; instead one measures the density of
1 states of an associatéli+ 1 electron system (as in X-ray ab-
Ym = Wi detpi(r )l sorption or EELS) or ai — 1 electron system in the case of
' photoemission. Hedin’s theory was intended to describe soft
and X-ray emission, we adapt it here for EELApendix Agives
1 , some backgroundto the many body problerAppendix A.1
Vn = ﬁ detgi(r ). and describes the “retarded” Green function which is needed

in this case iM\ppendix A.2

The central assumption of the theory is that the interaction
between the valence electrons and the core hole can be fully
described as the response of the electron gas to the injection

— of an additional electron while simultaneously and suddenly
/ e / Yn f(r)¥mdrydrz---drz a core hole is created. This means that the wavefunctions can
L N be approximated as antisymmetrised products of valence and

— — core wavefunctions. For simplicity here we will write them
N / ¢1(r) f(rea(ra) dry ljzf wj(rj)go,-(r,-) . as Hartree products rather thpan tv)\//o by two determinants but
! (2.3) the final result is the same. Hence we write the initial state as

then if the operatdi(r 1) is a function only of 1 and if all the
entriesp; andg; are the samexcept one pajrsay,¢1 andy;
then

The matrix element is rigorously a one electron integral, all

the overlap integrals following being equal to one. On the [i) = |c)|N)

other hand if more than one orbital changes then the matrix

element vanishes because of orthogonality of the basis func-the product of the ground state#alence electrons and the
tions that make up the Slater determinants, i.e., at least onevavefunction of the core electrons in which all core levels
of the succeeding factors in the product will be zero. Itis in- are doubly occupied. There is a complete set of states of
consistent tha-, andy-, are orthogonal eigenfunctions ofa the N+ 1 valence electron system labelled with an index s
Hamiltonian containing electron—electron interactions while and denotedN+ 1, s), having total energys (A.9) and the
simultaneously being representable as Slater determinantsfinal state is written as a product of this times the core level
A further complication arises if while one orbital changes Wwavefunction having one core level only singly occupied—a
significantly, the others all change by small amounts; an ef- core hole, thus:

fect that can be produced in a variational calculation, or by

demanding that, andy, are eigenstates differentHamil- [fs) =1lc—1)IN+1,s).

tonians. For examplé, may be an eigenstate of the atomic )

Hamiltonian including an additional potential due to the core APart from the decoupling of the core and valence wavefunc-
hole. In such cases the one electron matrix eleme(2.B) tions no restriction is pl.aced on thgse otherwise. We shall see
is followed by a product oN— 1 numbers less than or ap- that electron—glectrc_)n interaction is fully taken care of by the
proximately equal to one and the matrix element may or may spectral density which is the imaginary part of the retarded

not vanish identically a®l— co. This has been called an Green function. Just as in the general Bethe theory where
orthogonality catastrophe! Yo andy, are eigenfunction of the atomic Hamiltonian in-
cluding electron—electron interaction, gd) and |[N+1, s)
2.2. Scattered intensity from an extended crystal—the are eigenfunc_tions ofthe Hamiltonian with interact(@ns_).
Now by invoking the golden rule and the representation of

th f Hedi j
eory of Hedin €97 in field operatorgA.7), we can write

There is an alternative path (8.1) using the language of 5
many body physics which has a number of instructive fea- p(q, ) = ZT”p(g)VZ Z (fil / Wi (r) €97y (r) drli)
tures[13]. The question of representation of the initial and h ¢ B
final states is more clearly given for an extended system and
the matrix element emerges more readily as a one electron
integrgl out of a many body formalism. The Hedin t_heory = ZT”p(g)quZ |MS|28(E e te), (2.5)
lends itself well to the bandstructure approach; possibly the h P
most important benefit is that it provides a clear indication of
how the bandstructure calculation can be systematically im- where ¢ is the total energy of the ground state with the
proved, a point we will address in Secti8rB. In particular core level occupied. Note that a quantity likeis not a one
we can put into focus the question of how the measured nearelectron eigenvalue; rather a pole of the one electron Green
edge structure relates to the local density of states. We mayfunction (A.11). Now we write the field operators, without

x 8(E — € + €.)
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approximation as (c{A.4))

Y(r) = ve(r) + ¥o(r) = Zacﬁoc(r) + Zankﬁonk(r)y
c nk
(2.6)

wherea; anday are annihilation operators for one electron

core and valence states, respectively. Wtie6)is inserted
into (2.5) we observe that the second termyi(r) acting to
the right produces aN particle state that will give zero when
integrated with th& + 1 particle state on the left; similarly the
first term in@(r) acting to the left produces a vect@r— 2|

which will produce zero when integrated with the state on

the right. Hence, sincg¢(r) only acts on core functions and
Yry(r) only on valence functions, the matrix elemen{2b5)
becomes

M, = f (N + L sy n)IN) e — Liye(r)le) €97 d.

functional approach one usgs.13) to obtain finally

(0, E) ) |MqI*8(E + &c — k),
nk

whichis(2.1)wheresc andepk are now single particle eigen-
values of the core and valence levels, respectively.

3. Results of calculations

This section presents calculations based upon the theory
presented, and comparisons with experiment. The calcula-
tions use the all-electron LMTO scherfi] which is out-
lined in Appendix Balong with details about the calculation
of the transition matrix elements. Apart from treating core
and valence electrons self-consistently, the principal advan-
tage of the LMTO method is its efficiency without sacrificing
accuracy in the search for the exact solution to the local den-

Note that by neglecting dynamical interaction between the Sity equations. This permits the relaxation of a 100 or more
core hole and the excited electron, the transition rate be-atoms without trouble using molecular statistics as well as
comes the product of two independent rates: the rate ofthe calculation of properties such as the near edge structure
core hole production and the rate of valence excitation. Now in EELS. It was emphasised elsewhere that for reliable pre-

(c—1jy¢(r)|c) is non-zero only when the core level in ex-
pansion(2.6) is the particular core level to be excited (for
which we will retain the labet), so it becomes simplyc(r)

and expandinglfi(r) we obtain

Z aik‘ﬁnk(r)

nk

My = /%(r)(N +1s N) €97 dr

_ qu)c(r)éq-fank(r)drw + 1, slal, IV)
nk

= 3" Mg(N + L slal, [N,
nk

whereMg is exactly the matrix element if2.1). Comparing
now with the diagonal spectral dens{#y.12) and neglecting
off-diagonal termg13], we finally find from(2.5)

2

2
P(q, E) = 7p(g)qu 31" Mo(N + Lslaf IN)
nk

N

x 8(E — €5+ €.)

2
= =PV Y IMal* Anc(E + ).
nk

dictions, one requires a method giving accuratemic as
well aselectronicstructureg16].

We need to summarise a few points about the represen-
tation of the wavefunctions that are used to construct matrix
elements. It is clear from Bethe’s theory that the golden rule
requires us to take matrix elements of the interactii
between orthogonal eigenstates of the atomic Hamiltonian
Hatom Due to the orthogonality the interaction appears as the
operator &'"; and again due to orthogonality the expansion
of this (B.6) allows us to reject the first term. We have also
seen that the question of orthogonality in practice is trou-
blesome, since we cannot construct exact eigenstates of the
many electron HamiltoniafA.8). LMTO valence states such
as(B.5) are orthogonal to each other and to the core states as
long as they are eigenstates of the same Kohn-Sham equa-
tions(B.2); if we calculated valence and core states in a dif-
ferent potential, say with a core hole potential, the valence
and core states are not orthogonal to those constructed in the
ground state potential. This is because the LMTO’s are not a
fixed basis set, but depend on the potential. We should note
that to the core hole potential is also added the Hartree and
exchange correlation potentials due to the additional elec-
tron in the conduction band. The solid state theory of Hedin
makes it clear that even if we are working with eigenfunc-
tions of the HamiltoniarfA.8), the transition rate is given by

This expression encompasses all the electronic relaxationa squared matrix element between one electron eigenstates
due to the creation of the core hole and the injection of a non-interacting HamiltoniafA.2) multiplied by a spec-

of an additional electron into the conduction bands, all tral density that takes care of electron—electron interactions.

electron—electron interactions being taken care of by the spec4n a mean field, or independent electron picture such as den-

tral density which is the imaginary part of the one electron

Green function and/hich multiplies a matrix element involv-
ing only single particle state€alculation of the spectral den-
sity is possible within the GW approximation of Hedin and
Lundqvist[14] (Appendix A.3, whereas in the usual density

sity functional theory in the local density approximation, we
can take this to be merely a delta function. So while it is
neither convenient, nor necessary, to use different Hamilto-
nians for the final and initial states, what about the core hole
potential? Should this be included in the Hamiltonian? The
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answer is yes, in the sudden approximation. The Hedin pic- just one core hole on a nitrogen atom. In these calculations
ture is quite clear: the fast particle instantly creates a core we have averaged over the scattering vecipas explained
hole, switching on a potential additional to that seen by the in previous work{6]. We also show thabsolutely predicted
valence and core electrons in the ground state. Simultane-energy loss. The threshold energy was determined using the
ously the core electron is injected into the valence system, Slater transition state approximation and reduced by 4.22 eV
therefore its propagator, or Green function, is the one associ-which was found previously to be applicable universally to
ated with a Hamiltonian including an additional one electron the transition metal carbides and nitridés The point here
potential due to the core hole. Happily in the local density is that we wish to make the best attempt at calculating the
and GW approximations, we can construct one electron or- threshold energy, something which is not usually done in the
thogonal eigenstates and hence matrix elements, as outlinediterature (instead the spectra are aligned on the energy axis by
in Appendix B One may think of the electronic structure asa eye). In the case of the transition metal nitrides and carbides
self-consistent ground state under the constraint that a certairwe found that whereas the threshold energies calculated for
core occupancy is 1, not 2. independent electrons was in error by some 20 eV and very
scattered, when calculated using the Slater transition state
approximation the error was a rather uniform 4.22 eV. If we
apply this shift we then get an ab initio prediction of the

) Tge ratger cpbmglex gn?fetrrcémagnencl gtrUCtdure of CIN" absorption edge and further adjustment when comparing to
as been described as distorted rockSalf18}, and energy experimentis not permitted. This is héwg. 1is constructed.

comparisons between competing magnetic and non-magnetic Also in Fig. 1 is shown the spectrum obtained from a

phases using the Ioc_al spin Qen_5|ty approxma[ﬁ,rig]. calculation without a core hole. Compared to the experimen-
agree with _the experimental flndlng that CrN occurs in a tal EELS spectrum we see that peak positions are in better
structure with space gr-ou?nn?ahavgng C.rland l\éaltoms agreement from the “final state” basksg. 1also shows the

In ﬁ(c) Wyfk‘ljﬁ pOS'F'Onsx’E’ LTha L 2 TN g2 T X-ray absorption spectrum which includes the second peak
2 5+ % 7,3 —zWithx ~ g,z ~ zforCr,andx ~ g, z ~ as a shoulder rather more strongly than the EELS spectrum.
% for N. There are eight atoms in the primitive unit cell. Min-  We have applied a Lorentzian broadening only, ugfd4)
imising the energy with respectto lattice parameters and inter-with the plasmon energy calculated from the average electron
nal coordinates we fing=0.146,2=0.250 for Crx=0.099,  density, to which is added 0.2 eV to account for the lifetime
z=0.750forN; a=5.645A, b=2.988A, c=4.105A. LMTO of the core level. We do not apply instrumental broadening
calculations were done using a double set of s, p and d ba-in order to illustrateheoreticalpeak shapes. We attribute the
sis functions augmented in atomic spheres of radius 2.6 bohrreduction of the second peak to a shoulder in the experiment
(Cr) and 1.8 bohr (N). The large, and slightly overlapping, to magnetic disordering although the spectrum remains the
sphere radii obviate the need to include semicore Cr 3p func-same even at temperatures well below the Neel temperature
tions in the basis set. Smoothing radii were half the atomic [6]. Furthermore it has recently been argued that one can-
sphere radii and Hankel function localisation energies in the not distinguish short and long ranged magnetic ordering in

3.1. Chromium nitride

two sets were-0.01 and-0.1 Ry.

Fig. 1 shows nitrogen nedk-edge structure calculated
with one nitrogen core hole in the primitive unit cell; and
also in a unit cell (osupercel) with dimensions doubled in
all three directions (i.e., containing 64 atoms) and containing

— EELS
———-XAS

. 'supercell” ™

Arbitrary Units

400 405 4l0
Energy Loss (eV)

395

Fig. 1. Calculated and measured nitrogeredge energy loss spectra in
antiferromagnetic, orthorhombic CrN. The experimental EELS and X-ray
absorption data are from Paxton et[6]; the estimated error in the absolute
energy loss is=0.5 eV. The theoretical threshold is obtained using the Slater
transition state approximation and a downward shift of 4.22 eV which was
found to apply universally in transition metal carbides and nitr[6gsThe

thin solid lines are the calculated spectra with the inclusion of a core hole
and the use of primitive (8 atoms) ank2 x 2 (64 atoms) unit cells. The
dotted line is the calculation in the absence of the core hole.

an EELS experiment because of the small region of crystal
and the short period of time over which the interaction hap-
pens between the beam and specii2®h. There is need for
further work to elucidate this point.

Fig. 2shows the difference in valence electron density be-
tween the self-consistent ground states with and without the
core hole, calculated using the 64-atom supercell. The pos-
itive contours show where the charge accumulates to screen
the core hole. The spin density difference shows that the total
moment changes from zero in the antiferromagnetic ground
state to about 0/4g: the excited electron is spin polarised.
Note that the screening charge is fairly well localised to be-
tween the first and second neighbour shell of the nitrogen
atom. The spin density is very well localised to within the
atomic sphere radius of the nitrogen atom, that is to say the
majority of the spin moment is localised at the excited nitro-
gen atom.

3.2. Monoclinic zirconia

The second example is monoclinic zirconia which is cho-
sen because this is the phase that can be prepared in a pure
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s

Fig. 2. Asectionthrough thee-b plane of orthorhombic CrN cutting through

the nitrogen at which there is a core hole. The reader can see the face of

the distorted rocksalt structure rotated by 4krge, dark circles are Cr
atoms with spin “up”, large light circles are Cr atoms with spin “down”,
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supercell

-~ unit cell
ELS

Arbitrary Units

535 540

Energy Loss (eV)

530

Fig. 3. Calculated and measured oxyd¢feadge energy loss spectra in mon-
oclinic ZrO,. The experimental EELS spectrum is taken from Ostanin et al.
[24]; the uncertainty in the absolute energy lossikeV. The theoretical
curves have been shifted down by 6 eV to line up the spectra. k22 2
supercell shows significantly improved agreement with the experiment.

with the experiment. A similar effect has been found in MgO
using the Z+ 1" approximation to model the core hdg5].
The threshold energy predicted by the Slater transition state
approximation is 535.763 eV on oxygen(l) and 536.467 eV
on oxygen(ll). The calculated spectrum is the sum of these
shifted with respect to each other to account for the chemi-
cal shift of 0.704 eV. Finally the summed spectra are shifted
by a further 6 eV to bring the peak into coincidence with
the experiment. This 6 eV is the error from the local density
approximation in the transition state. The spectra were broad-
ened usindgA.14), with a plasmon energy of 26 eV obtained
experimentally[23].

Fig. 4shows, as irFig. 2, the electron density associated

smaller circles are N atoms. The contours are electron density differenceswith the core hole. The perturbation is more long ranged than
between the ground states with and without the hole and hence show thejn metallic CrN and can be seen to have the effect of polarising

rearrangement of charge created by the core excitation. The upper pane
shows the density difference and the lower panel the spin density difference,
up minus down. Contours arel0, +5 and+2.5 in the upper panel and
+500, +£50, +5 and+0.5 in the lower panel with dotted lines denoting
negative values. Units are 1electrons bohr3.

crystal. LMTO calculations were done using, on the zir-
conium atoms, one set of s, p, d and f functions with lo-
calisation energies-0.01 Ry and a second set of s, p and
d only with localisation energies 5, —2 and—2 Ry, aug-

mented in atomic spheres of radius 2.3 bohr. In addition
local orbitals[21] were used to represent the 4s and 4p

the charge on the neighbouring zirconium as well as oxygen
ions. This longer range is consistent with the difference in
spectra between the primitive unit cell and the supercell. It
may seem puzzling that the charge differences are mostly
associated with the neighbouring Zr ions, and that these are
dipole polarised contrary to the notion that it is the anions
that are most polarisable. However the unoccupied states at
the conduction band edge are largely Zr-derived in an ionic
picture, hence the weight is largely on the cation. Further-
more these are d-states: the dipoles observed are caused by
the electrostatic effect of the nearby core hole potential. This

semicore states. On the oxygen atoms, the basis functiond€inforces the point that in oxides, and ionic crystals in gen-

were s, p and d with localisation energie6.01 and—-1 Ry,

eral, theanion K-edges reveal the electronic structure of the

the oxygen atomic sphere radius was 1.8 bohr. The mon-cation-derived energy bands.

oclinic crystal has space group?i/c and the lattice pa-

rameters and internal coordinates were determined by en-3.3. Nickel oxide

ergy minimisationtoba=5.071A, b=5.191A, c=5.2784,
$=99.17;%z,=0.281y7, =0.041 27, = 0.211 Xo() = 0.070,
Yoq)=0.335, Zog)=0.344, xoqu)=0.448, yoq)=0.758,

A final example is cubic NiO whose electronic structure
has been the subject of vivid controversy over the last 20

Zo(1) = 0.480. These are an improvement compared to exper-years. The local spin density approximation (LSDA) cor-

iment and other LDA calculations on those reported earlier

[22] due to the inclusion of local orbitals in the present work.
Fig. 3shows calculated EELS spectra in the primitive 12-

atom unit cell and in a supercell of 96 atoms. In this case,

rectly predicts NiO to be an antiferromagnetic insulator with
the (111) magnetic ordering found in MnN@6]. However
LSDA also predicts aband gap of only 0.3 eV; indeed the crys-
tal is predicted to be metallic under other magnetic orderings

since the crystal is an insulator and therefore screening of[26]. On the other hand highly correlated configuration inter-
the core hole is less efficient than in a metal, there is someaction schemes predict a band gap of about 4 eV, consistent

shift of the first peak in the supercell to coincide rather better

with experimen{27]. It is now accepted that NiO is neither a
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Arbitrary Units

530 535 540
Energy Loss (eV)

Fig. 5. Calculated and measured oxyd¢erdge energy loss spectra in NiO.
Experimental points are from Dudarev et[@9]. Dotted and solid lines are
taken from calculations by Faleev etfd1] using the local spin density and
GW approximations (see the text for details). The spectra have been aligned
so that the first peaks coincide.

mation[30], have been used to calculate the electronic struc-
ture of NiO, but the band gap is still not correctly rendered
in these schemes. However, very recently Faleev ¢84],

have developed self-consistenGW approximation imple-
mented using the LMTO basis which correctly reproduces
the band gap and electronic structure of NiO. Rather surpris-
ingly they conclude that the LSDA makes a better starting
point than the configuration interaction picture for the de-
scription of the unoccupied bands. Fig. 5 we show the
oxygen neaiK-edge structure in both LSDA and the self-
consistent GW approximation, compared with experimental
data taken from Dudarev et §.9], who compared their data
with LDA + U calculations. In the latter scheme the Coulomb
integralU has to be assigned semi-empirically, whereas the
GW approximation, like LSDA is parameter free. These pre-
liminary calculations have been made using the GW quasi-
particle energies obtained by replacWg in the one electron
Kohn—Sham equations by the self-eney16]. However

the spectral function was not computed: instead a Gaussian
broadening was used. Furthermore spectra were calculated
without a core hole from which we would expect downward
shifts of about 1eV. Even this simplified GW approxima-
tion demonstrates a significant improvement over the LSDA.
However the agreement is not as good as expected from,
say, the results ifrig. 3. It will be very interesting to ex-
tend the calculation by including the explicitly calculated
spectral density30]. Clearly the GW approximation is the
Fig. 4. Sections through the< plane of monoclinic Zr@showing electron most natural way to go beyond the LDA, therefore these first
density differences between the ground states with and without a core hole.calculations are a very exciting indication of the future for

Contours are:20,£10 andd5 in units of 104 electrons bohr3 with dotted the prediction Of near edge structure in e|ectr0n energy IOSS
lines denoting negative values. The sections cut through (a) the oxygen with spectroscopy.

a core hole (this is an O(I) atom which is three-fold coordinated to Zr); and
(b) a Zr to which the O(l) is bonded in the neighbouring plane.

b)
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Appendix A. Short introduction to many body theory for fermions. This fermion commutator was first shown by
y _ Jordan and Wigner to be equivalent to the Pauli principle,
A.1. The Schodinger equation basically because the number operators always turn out to be
Oorl.

Following Haken[32], let us think of the Sclidinger
equation for a single particle and its Hermitian conjugate
as classical wave equations:

It is useful to remember that the “classical” Satinger
equation(A.1) contains a Hamiltonian operatev2 +Vand
the Hamiltonian in second quantisation
72

h 2 — —
-—V V(Y = ihy, Al h?
om | Y VOV =ihy AD oy / vt (-Evz n V(r)) w(r)dr (A3)
72
—;—Vzlll* + V()Y = —ihy* is also an operatdut these are not the same thimg the first
m

case, the Hamiltonian acts upon an eigenfunctiongs@y,
in terms of independent variablgsandy" (or equivalently which is a function of position, yielding its eigenvallg
the real and imaginary parts of). If we construct a La-  the second quantised Hamiltoniéh.3) acts upon a (possi-

grangian bly many body) eigenfunctios® in an abstract way through
72 the influence of position-dependent field operators. So the
L — f v* (iﬁ{p — V()Y + —V21p> dr, second quantised Sdidinger equation isl® =E® andE is
2m the expectation value of the total energy.

Fundamental to many body physics is the expansion of
the field operators in terms of single-particle solutions of the
time-independent Schdinger equation

then the Lagrangian equation of motion leads directly to the
Schiddinger equation:

dsL _ 3L (iﬁ{/f V()Y + U v2¢> 0 2
drdyr Sy am ~5-V20i(0) + V(D)i(r) = Eigi(r).
We therefore form the canonically conjugate momentum
This is because the one-particle problem is usually thought
S, _
T = @ =ihy of as soluble so the;(r) are known and
in order to form the Hamiltonian Y(r) = aipi(r), (A.4a)
H= / mpdr — L _
v = alair) (A.4b)

. R R?
_ ; Ry A S R L v 2A *
o / (I}”M/ Y™y — ¢ 2mV vy V(r)w) dr. defines creation and annihilation operators for single-particle
) ] ) ] states which obey the commutation relations
Since the first two terms in parentheses cancel we find the

Hamiltonian is [ai, aj.] =8, [ai,a;] =0, [aj, aj.] =0
= / V(1) (_Z_VZ I V(r)) W) dr. (A2) with equivalent anticommutation relations for fermions:
m .
[ai,aj.]_‘_ = 8y, [a,-,aj]+ =0, [a},a}]+ =0.

One may regardA.2) as afundamental postulatef quan-
tum mechanics accompanied by the following commutation (A.5)

relations which serve to quantise this Hamiltonian by trans- 1o ground state, is called thezacuum staté many-body
forming the “classical” quantitieg/(r) and v (r) into field physics and is defined as

operatorsy(r) andyf(r) for which

[w(r). v (0] = v )i (1) — wi (') = 80 — 1),
[w(r). w(r)] = w()y(r') — w(r )y (r) =0,

Wi (). v ()] = v v ) — I ()yi(r) =0

a;®Po=0 foralli,

and the solutions of the Sabdinger equation, iH is given
by (A.3), are constructed from the vacuum state as

Y
b = a;) Do,
for bosons, and U( i) o
(), w1y = v )W) + v @O)w’) =8 — 1), wheren; are the occupation numbers of statavhich for
(), w(t)]. = vO)U(r’) + v()y(r) = 0 fermions are either 0 or 1. Because of the commutation rela-
k) J,- - - )

tions the Pauli principle is built in to this wavefunction which
i), vi )] = vy ) + wie)wir)y =0 is hence exactly equivalent to a single Slater determinant.
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Itis instructive to work through a few examples. Titea-
ticle density operatom second quantisation is
p(r) = v (YD),
and we can construct its expectation value as the bracket
(@Y )y ().
If @ is the single particle eigenfunction
® = a b, (A.6)

then the expectation value of the particle density operator is

<az¢o Z ajgbf Z ajg; a1®o> )

: J

The trick is to get all the annihilation operators over to the

right where they produce zero when they operate on the vac-¥(r. 1) =

uum state. Freely using the commutation relatiphs) it
is found that the expectation value for this eigenfunction is
simply ¢;(r)¢x(r) which is what is expected since this is just
the single particle density matrix element.

Another example is the position operator in second quan-
tisation,
/ win)xw(r) dr. (A.7)
Using again the eigenfunctiq.6) we soon get for the ex-
pectation value of the position operator

[ i@y
as expected. Itis more interesting to work out the expectation

value of the position operator in the two particle eigenfunction

® = alal .

One finds
f 11 )bur) dr + / o7 (eb(r) .

A.2. The one electron Green function

Let us concentrate specifically on electrons, and in par-
ticular on the problem encountered in electron energy loss
spectroscopy when an additional electron is excited from a
core level, and “injected,” into the conduction band of the

crystal. In many body theory such a process is described by

the one electron Green function associated with the Hamil-
tonian

72
H= /w(r) (_;—mvz + V(r)) w(r)dr

+5 [ VOREWEr O d. a8
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where the final term accounts for electron—electron interac-
tion and
2

w(rr /) = Ty .

The Green function ifl4]
G(re,r't) = —i(N[y(r, )y (', )N,

which is intended to describe all possible events in which
a particle is created in the ground stateNoélectrons Ny,

at timet’ and destroyed at a later timelt is the probability
amplitudethat an electron createdrdiat timet’ will be found

atr at a later time. Hence in principle the Green function
contains all the information needed to describe the EELS
spectrum. Herg (r, t) is the annihilation field operator in the
Heisenberg representation,

ei Ht/ﬁw(r) efi Ht/l_l'

In order to account for all possible excited states of the in-
jected electron, one inserts a complete set of eigenstatés of
havingN + 1 electrons. These are denotdid- 1, s) in which
slabels the particular excited state. Then if the total energy
of the ground state iy and of thesth excited state iEn + 1, s

we may define

€g = EN-HI.,s — Ey, (Ag)
and
fs(r) = (NIY(r)IN + 1, 5). (A.10)

The Green function is Fourier transformed from time to en-
ergy variablg14] and becomes

- LI

where “0” denotes a positive infinitesimal number. Note that
the poles of the Green function are the excitation energies of
the system. Using the “Dirac” identifythe imaginary part

of G(rr’, €) is  times thespectral function

AQt, @) =Y £ fi(r)8(e — €),

(A.11)

and itisthis quantity that is of mostinterest for us, particularly
when represented in the basis of single particle states used to
expand the field operators{A.4). This is called the spectral
weight function and is written

Ajje) = // @i(NA(T’, €)p;(r')dr dr’,

and if we insert the expansidA.4) into (A.10), we find for
a diagonal element,

Aj@= > IN+1, s|aj.|1v)|25(e — ). (A.12)

1
X

im0+ ﬁ = P¥ xins(x) (P denotes “principal value”).
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Hedin and Lundqvisf14] work out a number of examples dent electron Green function
for model systems. If the electrons are independent, that is,
non-interacting then the spectral weight function becomes G(rr’, ¢) = Z
simply :

i(Nei(r)
E— &

similar to (A.11). As Hedin and Lundqvist explaifiL4],

the effect of electron—electron interaction is that theal
potential Vyc(r) must be replaced by a non-local, energy-
dependent potential known as tkelf-energy operatoand
denoted>(rr ', E). This describes in a non-average, dynami-
calway the effects of other electrons as an electron propagates
in the electron gas. Electrons in this picture have a complex
energyE, the real part is the quasiparticle energy, such as
(A.9) and the Green functiofA.11) is constructed from the
more complex objecté.10).

This function describes a Lorentzian lineshape in with Hedin and Lundqvisf14] proposed an approximation to

is the lifetime of the electron that has been excited by the in- the self-energy which is now called the GW-approximation.
coming electron beam. In an independent electron model, The reason that the Hartree—Fock approximation is very poor
such as that described by conventional band theory (sedn solids, especially metals, is that the exchange energy is
Appendix B electrons have infinite lifetimes. Interactions the unscreened Coulomb interaction between the exchange
serve to limit the time an electron may remain in an excited charge. One should include screening of the Coulomb po-
state since it will lose energy by’ for examp|e, Auger pro- tential through a dynamica”y screened interactithnThe
cesses. In the case of an interacting free electron gas (soGW-approximation to the self-energy 5=i GW. In many
called “jellium”) it has been shown that the lifetime is given Pody language the GW-approximation amounts to a neglect

Ap(€) = 8(e — &), (A.13)
wheregy is the eigenvalue of the one electron staté the
electrons are in “decaying states,” which is an approxima-
tion to the situation experienced by an excited electron in the
unoccupied part of the energy bands of a solid then

1 r

MO r e

by [10] of “vertex corrections”. For complete details, see Aryaseti-
awan and Gunnarss¢a4].
2 3 _E 2
r== */_Ep h— ZF (A.14)
128 w

Appendix B. Density functional theory and the

in whichEr is the Fermi energy, is the plasmon energyand ~ LMTO method
Wis the width of the occupied part of the band. The plasmon
energy may taken from the low loss region of the EELS spec-
trum, or calculated from the formulé, = 4./7n Ry, where

nis the number of valence electrons per unit volume.

A very significant breakthrough in the understanding and
implementation of electronic structure calculation was made
in the mid-1960s when Hohenberg, Kohn and Sham showed
that the many body problem of calculating total energy and
electron density in the ground state can be reduced to a one-
electron problenfil1]. Thisis notthe place to give full details;
indeed the methods arising from DFT are now widely known

The density functional theory is described Appendix [35]. However the salient facts are that the total energy of an
B. This theory which has very wide ranging consequences electronic system in the ground state as a functional of the
in physics and materials science is based on the transforma<electron density(r) is the sum of three terms: the kinetic en-
tion of the many body problem into a set of single particle ergy of a set of non-interacting fermions having the same den-
Schiddinger equations, each particle moving in #ifective sity, the electrostatic self-energy of the charge distribution,
potential \s(r) = Vedr) + Vxc(r) of the other particles. This  including the positive charges of the nuclei and the “exchange
makes this anean field theoryalong with the Hartree—Fock  and correlation” energy which accounts for the Pauli princi-
approximation, which results in the wavefunctions being ex- ple of antisymmetry of fermions (exchange) and dynamical
pressible as single Slater determinants of one electron orbitalscorrelations between electrons which are not accounted for
[32,33] The analogue of these orbitals in density functional by the average Hartree energy. The exchange and correla-
theory are the Kohn—Sham orbitajg(r), but it must be em-  tion energy also contains corrections to the kinetic energy to
phasised that if these are assembled into a Slater determinardccount for electron interactions. Hence all the many body
they do not form eigenstates of a many particle Hamiltonian parts of the problem are contained in the exchange and corre-
any more than do the Slater determinants in the Hartree—FocKation energy; and this term has to be approximated to make a
theory. In both Hartree—Fock and density functional theory workable theory. The simplest, and most effective approach

A.3. The GW approximation

the electrons are described @en-interactingparticles oc-
cupying one electron orbitalg;(r) and having one electron
energy levels (eigenvalueg) One can construct an indepen-

to this is to make théocal density approximatio(LDA) in
which the functional is replaced pointwise in the electron gas
by the function (which is known pretty accurately) for the
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exchange and correlation energy of a uniform electron gas,electron states, but there is no rigorous justification for do-
taking the density of the gas as that which is encountereding this. The present paper is, to a large extent, concerned
locally at each point. The total energy within DFT is written with how such measurable electronic states and the transi-
as tions between them can be described within the local density
approximation to density functional theory.
Elp] = Tilp] + Ulpl + Exclpl. (B.1) To calculate the total energy as a functional of the electron
which are the three terms described above. Kohn and Shanflensity, the electrostatic energy is written as
showed that without approximation the density and hence 1 1
> / p(r)Ves(r) + 5 Z ZyVy.
v

the total energy (and consequently force and stress) can bd/ [o] = 2
found by solving a one electron Séinger equation (or

Kohn—Sham equation) for each electron From the Kohn—-Sham equati¢B.2) it follows that the ki-
7 netic energy of the non-interacting fermions belonging to the
(-5n V2 + D+ VD) 0 = s0). (B2)  orbialsin()s

N
The electrostan_c potential energy is the electronic charge T[] = Zgi _ / o(r) Ves(r) dr,
times the potential seen by an electron, namely P

r’ z i i i i

Voo(r) = ¢ |rp( r)/| o' — 2y - UR s (B.3) and the total energy in the LDA is conveniently written as

- - vy

v N 1
Similarly, the potential energy seen by a nucleus is E[p] = &+ | plexe — Vie)dr — 5 [ PVes dr
—~

z p(r) l

V, = e e . 1
' l/Z#)|Rv_Rv/| IRy —r]| +§ZZUVV.
v

Here R, andz, are the position and atomic number of nucleus
v. Formally, the “exchange and correlation potential” is the
functional derivative,

SE,.

It is now clear that the hard part of the problem is not the
exchange and correlation, but the kinetic energy. To get the
kinetic energy it is necessary to solvéandstructurgrob-

Vie(r) = ) lem. This involves representing the Kohn—Sham orbitals and
5p the charge density in suitable basis functions. This converts
This functional and its derivative are unknown; but by making the Schédinger equatio(B.2)into a matrix eigenvalue prob-
the |oca| density approximation, the potentia' becomes Iem Wh|Ch can be SOlVed by numel’ica| methOdS. The SO|uti0n
to (B.2)that minimisegB.1) must be found self-consistently,
Vie(r) = dﬂ(pgxc(p))’ since the potential that enters the eigenproblem itself depends

on the solution through equatio(B®.3) and(B.4).
whereexc(p) is the exchange and correlation energy density ~ There is also a spin density functional the¢®g] which
of a uniform electron gas of densigy The point is that the  is the scheme that is used in the text to describe the elec-

density is represented as a sum aMdtohn—Sham orbitals:  tronic structure of CrN. The principal points are that the
Kohn—-Sham orbitals acquire a spin index which doubles

N . .
_ the number of Kohn—Sham equations;. becomes spin-
p(r) = Z ¢i(Nei(r). (B.4) dependent and the total energy depends on the charge density
i=1 p=p! +p¥ and the magnetic moment=p' — p*.
and minimisation of(B.1) with respect top leads directly The best known and most popular bandstructure scheme

to the Kohn—Sham EdB.2), one for each orbital. The den- employs plane waves in the expansion of both the density and
sity functional method is tractable for computation and at the wavefunction[35]. In that case the nuclear potentialB.3)
same time provides a transparent picture for the understandis approximated by a pseudopotential and the core electrons
ing of electronic structure. We all wish to view electronic are frozen in their atomic states. This approach is clearly not
processes in condensed matter with a non-interacting, or in-easily adaptable to the calculation of core level spectra by
dependent electron picture. This can now be done as long aghe inclusion of core holes. Generally the plane wave pseu-
we accept that the potential that goes into the 8dimger dopotential method is regarded as being the most efficient of
equation is the “effective potentiales(r) = Vedr) + Vyc(r). the bandstructure schemes, but a recent mefhddbased
There is, of course, a big price to pay; in reducing a many in the linear muffin-tin orbital (LMTO) approach is equally
body problem to a single-particle picture, the resulting or- fast or faster on modern computers and has the advantage of
bitalsgi(r) and their eigenenergiesare strictly only mathe-  being an “all electron” scheme in which the core electrons are
matical constructs arising from the Euler—Lagrange minimi- explicitly retained. The valence electrons are represented in
sation of(B.1); these are very often interpreted as measurable a basis of atom-centred atomic-like functiopsz;, labelled
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with a site indexR angular momentum quantum numbers question as well as augmented tails of envelopes centred at

L = ¢m and an additional energy variakie all other sites, which is what is meant by “one centre expan-
sion.” Hence an expansion analogous to te™expansion
(rink) = @u(r) = Z chk’éRLxeRL, (B.5) in conventional LMTQ[38],
k eRL )
oo (rink) =" aly Lue@)YL(r) + > ahy  se(r)YL(r)
L L

The Kohn—-Sham orbitalg; are labelled withn, the band _

. . . = rYc(r),

index, andk the wavevector. The basis functiopsre “aug- XL: Fue 1 (OYL(1)

mented smooth Hankel functions,” this means that, in the

spirit of Slater's augmented plane waves, space within the is valid inside the atomic spheres. In order to calculate matrix
crystal is divided into spherical volumes about each atom elements of

(which may be overlapping) and the remaining “interstitial g, . 1 5

region.” Atom-centred envelope functions are constructed e =14ig-r -3+ (8.6)
around each atomic site. These are “smooth Hankel func-petween a core state|c,) of angular momenturd (in this
tions” that are close to Gaussian-like at the origin and have grticle we are confined té-edges, for whicti’ = 0, we omit
the asymptotic behaviour of a Hankel function of enefgy  the indexm since we do not deal with multiplet effects), and

able from a Hankel function is determined by a “smoothing harmonic polynomial§l1]

radius” that is assigned to each envelope function. The en-

velopes are multiplied by real spherical harmotjiicq Y, to RL(T) = | 4Ar Y1)
give them atomic orbital like angular momentum. To arrive L=V o2e+1 "EY7
at a basis function, the envelopes are “augmented,” that is
replaced within each atomic sphere by solutions of the ra-
dial Schidinger equation of angular momentumand at

a given energyo determined by the boundary conditions M,y ;¢ = (nk|R.(r)|ce)

that the resulting wavefunctions should be continuous and a

differentiable everywhere. The radial Sotinger equation _ |7 ) ,,/ z £ 0,2
is solved at each iteration toward self-consistency in each 2t+1 ;CLL L S (r)rce ()™ dr
atomic sphere, so that the basis set is flexible, not fixed as in a

conventional linear combination of atomic orbitals. Because Where

the radial Schidinger equation is solved for all electrons

in the potential of the nucleus (and the Madelung potential Cror = / d2Yp Yy

of other nuclei) the core wavefunctions are also computed . )
are real Gaunt coefficients. It is these that take care of the

at each iteration and by construction are orthogonalised to _ i . .
the valence electrons. In the implementation used here, theselecnon rules; for example in the next equation these are

core is assumed to be spherical and spin—orbit coupling is 2610 unles$/’ =+l .
neglected; all other relativistic effects are included (Darwin ?!n the dipole approximation we have= 1, andq - r =
and mass—velocity shifts). Complete details of the method 2 m=1R1n(@)Rn (r), therefore
have been recently published by Methfessel etl&]]. -

In an augmented wave formulation of the bandstructure (nk|q - rlcy) = \/;Z > g fak. L 1rlce ) Comemrerm -
problem there is the simplification that for core level spec- L mm’
tra we only need to know the expansion of the valence StateHere[
(r | nk) within a single atomic spherelhis is because the
matrix element that we seek involves integrating this state
times the core wavefunction, and by definition the core wave-
function vanishes at the atomic sphere boundary. The LMTO
method uses a construction for augmentation whereby func-
tionsu,(r) are defined which have the property that they have
zero value atachsphere surfacexcept oneSimilarly func-

which can be used to express matrix elements of any power
of g-r as a sum of radial integrals

11], Rim(@) = {@z, gy, ax} and the radial integral

Uk orlrlce) = / T (ree(r)r? dr

can easily be done numerically. Since the Gaunt coefficients
can be tabulated once and for all, the implementation of core
level matrix elements into a full potential LMTO program can
be done in a fairly straightforward way. In order to go beyond

tions s¢(r) are constructed which have zestope at each . S . .
. the dipole approximation, one uses the spherical harmonic
sphere surface except of#r]. These are then used in one :
polynomials of the second degriid ],

centre expansions to enforce the values and slopes of the ra*
dial functions to ensure the matching boundary conditions g, (r) =
at the sphere surfaces. Thereby the valence wavefunction is

o 1(9.2 _ 2 1 2_ .2
constructed from augmented envelopes centred at the site in {3@r5 —19) V3rirs /3rars ?*/é(rl —r5) 3wz},
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whereby we find
2 2 1.

D~ Ren(@Ran(r) = 5@ -1~ 5(ar)

from which it follows that

(nk|(@ - r)lce) = \/%Z >

L" mm'

2
X Rop (Q){ fuk, L7171 ) Comerm' e7m”

3
39" L),
m

In this way, if required, one can calculate matrix elements for

a particular scattering vectqr if such a measurement can be
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