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Effect of crystal defects in iron on carbon diffusivity: Analytical model married to atomistics
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We devise a scheme for simulating diffusion of interstitial solutes in metals when the diffusivity is modified
by the presence of defects. The method is quite general and may be used to model the effects of more than one
defect in combination. In addition, it is amenable to being described by a simple analytic model fitted to a small
number of parameters that can be determined by computer experiments. Using classical interatomic potentials
and molecular dynamics, we calculate the diffusivity of carbon in iron and study the effects of a substitutional
alloying element and an edge dislocation. Some of our results are validated against published experimental
findings and previous simulations, and we are able to apply our theoretical model to rationalize our results and
to show how, once the model is fitted to the computer experiments, it may be used in a predictive manner.
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Steel is the most ubiquitous structural material and, ac-
cording to the World Steel Association, demand is predicted
to increase to six billion sterling by 2030. It is a material
enjoying continuous development: more than three-quarters of
the current grades have been designed in the last 20 years [1].
The SpaceX Starship will be made from steel [2]. The heart
of the issue is the behavior of carbon (C) in iron (Fe), since it
is this alloying element that distinguishes Fe from steel. The
effect of this interstitial element is key to the understanding of
a myriad of phenomena. Building up on recent developments
on the study of the diffusion C in Fe [3–9], we devise a scheme
for simulating diffusion of interstitial solutes in metals, such
as C in Fe, when the diffusivity is modified by the presence of
defects.

The effect that substitutional alloying elements in Fe have
in the diffusion of C, has been studied in the literature using
density functional theory and kinetic Monte Carlo simulations
[10,11]. It was found that the addition of solutes to Fe can
greatly affect the distribution and chemical potential of C,
and that different alloying elements can have more or less
pronounced effects on the diffusivity of C.

The interaction of diffusing C with dislocations has also
received some attention in the literature. In Ref. [12], the con-
cept of conjugate direction of migration was proposed. It was
found that C does not necessarily diffuse along the dislocation
line, but along a conjugate direction that is a function of the
character of the dislocation. A key observation was that C
and the dislocation move as a codiffusing complex and not
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as separate entities. This effect arises from the role that C
plays in stabilizing a kink in the dislocation line: a segment
of dislocation is attracted to a C atom to generate a thermally
activated kink. In this way, the dislocation advances crabwise,
with kinks appearing simultaneously with the migration of the
C atom along the dislocation line. We observe exactly this
effect in the simulations reported here, as will be discussed
later in this Letter.

In the current Letter, we build up on previous work [13] to
propose a simplified Arrhenius-based model for the diffusion
of an interstitial atom (C) within a base uniform lattice (Fe)
in the presence of defects (substitutional alloying elements,
dislocations) in the dilute limit. We derive an analytical ex-
pression to calculate the diffusivity of C as a function of a
defect density and temperature. In principle, the defects can
take any shape, but here we will focus on substitutional atoms
(point defects) and edge dislocations (line defects).

Diffusion of an interstitial atom in a cubic crystal is de-
scribed by Einstein’s equation for diffusivity,

D = 1

6
zd2ν, (1)

in which z = 4 is the number of neighboring octahedral sites
in the Body Centred Cubic (BCC) lattice, d = aFe

0 /2 is the
distance between them, and ν is the probability per unit time
that the C atom makes a jump into one of the former. For
systems containing defects, the background energy landscape
is no longer homogeneous; the diffusional behavior of an
interstitial atom cannot be properly described using a single
energy barrier.
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FIG. 1. Schematic view of the simulation systems containing a C
atom and a crystallographic defect (×) embedded in a BCC Fe lat-
tice. Region 1 (in orange) is defect-free and has the same properties
of bulk Fe. Region 2 (in purple) surrounds the defect and acts as a
medium with different average diffusional properties.

Consider a periodic model system containing a single de-
fect and a C interstitial atom in an otherwise homogeneous
BCC-Fe lattice, see Fig. 1. We divide the system into two
regions: region 1 is located away from the defect while region
2 contains the defect. The defect density can be effectively
controlled by changing the size of region 1 while keeping the
size of region 2 fixed. The probability, Pi, for the C atom to be
found in region i (for i = 1, 2) is given by

Pi = gie−Ei/kBT∑m
j=1 g je−Ej/kBT

, (2)

where gi is the number of octahedral sites in region i, Ei

is an equivalent binding energy for region i, and m = 2 is
the number of regions. Note that, in principle, m could take
larger values in systems simultaneously containing various
noninteracting defect types.

The probability density, νi, that the C atom makes a jump
between two sites while being in region i is given by the
Boltzmann formula,

νi = ν0
i e−εi/kBT , (3)

where εi is an equivalent energy barrier between octahedral
sites for region i, and ν0

i is a normalizing prefactor, or attempt
frequency.

We can combine the two previous equations and assert that
the diffusivity of the interstitial C atom in the system is given
by

D = Deff
0

m∑
i=1

Piνi, (4)

where Deff
0 is an effective prefactor. Once the values of Ei and

εi are identified, Eq. (4) is valid across range of temperatures
and defect densities/concentrations.

We now evaluate the robustness of Eq. (4) against Molecu-
lar Dynamics (MD) simulations for the following three cases:
(i) diffusion in bulk Fe, (ii) diffusion in the presence of sub-
stitutional solutes, and (iii) diffusion in the presence of edge
dislocations. The values of Ei and εi are estimated by fitting
Eq. (4) to MD results obtained at temperatures of 1023.15 K,
923.15 K, 823.15 K, and 723.15 K at, if any, a single value of
defect density/concentration. The temperatures are chosen to

enable sufficiently fast diffusion while keeping the underlying
BCC lattice stable.

In the case of a homogeneous system with only one region
(one value for the energy barriers), like C in Fe, Eq. (4)
reduces to the Arrhenius equation, since Pi = P1 = 1,

D = D0e−ε/kBT , (5)

in which D0 = zd2ν0/6, and ε is the activation enthalpy. For
the calculations performed in this paper, we make the follow-
ing approximations: ν0

i = ν0 and Deff
0 = D0/ν0.

The results of the diffusivity simulations of C in bulk
Fe are presented in Fig. 2(a), marked with the labels bulk
Embedded Atom Method (EAM) and bulk Modified Embed-
ded Atom Method (MEAM), together with a fit to Eq. (5).
A detailed description of the simulation procedure and the
methodology to calculate the diffusivity from MD is pre-
sented in the Supplemental Material [14] [3,5,8,13,15–35].
As expected, there is an inverse relation between the two
quantities, a clear signature of a single rate-limited thermally
activated process. The calculation is performed for two in-
teratomic potentials, one (developed in Refs. [25,26]) based
on the EAM [22–24] and another (developed in Ref. [30])
based on the MEAM [27–29] formalisms. We obtain energy
barriers for the migration of C between adjacent octahedral
sites of εEAM = 0.79 eV and εMEAM = 0.71 eV and values for
the prefactor of DEAM

0 = 6.99 × 10−7 m2 s−1 and DMEAM
0 =

1.97 × 10−7 m2 s−1. More details about the interatomic po-
tentials used in this paper can be found in the Supplemental
Material [14].

The diffusion of C in the presence of substitutional solutes
is simulated using the Fe-Ti-C MEAM potential [30]. We
use Eq. (4) and the method described above to predict the
diffusivity of C in a system of BCC Fe containing different
concentrations of Ti atoms. We want to capture the effect that
a substitutional atom has on the diffusivity of C in BCC Fe.

We start by expanding Eq. (4) for a system that contains
two regions (see Fig. 1): Region 2 will be defined as a cube
of size 2.5 × 2.5 × 2.5 Fe lattice parameters (aFe

0 ) centered in
the Ti atom. Region 1 encompasses the rest of the atoms in the
system, whose behavior can be approximated by that of bulk
BCC Fe. The expanded Eq. (4) is given by

D = Deff
0

[
g1e−E1/(kBT )

g1e−E1/(kBT ) + g2e−E2/(kBT )
ν1,0e−ε1/(kBT )

+ g2e−E2/(kBT )

g1e−E1/(kBT ) + g2e−E2/(kBT )
ν2,0e−ε2/(kBT )

]
.

(6)

In the above equation, there are four unknown variables that
need to be extracted from MD simulations, namely, E1, ε1,
E2, and ε2. Since the atoms in region 1 are far from the Ti
atom, we can assign to ε1 the value obtained previously for C
diffusion in bulk BCC Fe. We thus have that ε1 = εMEAM =
0.71 eV. We define E1 = 0 to be the reference point for mea-
suring energies.

We proceed to the calculation of E2 and ε2 using MD
simulations. A periodic system of BCC Fe atoms of size
6 × 6 × 6 aFe

0 is generated, one of the Fe atoms is replaced by
a Ti atom (for a Ti concentration of 0.23 at. %), and a single
interstitial C atom is introduced. We define the size of region
2 to be 2.5 × 2.5 × 2.5 aFe

0 . The resulting diffusivities from
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FIG. 2. Arrhenius plot of the effective diffusivities (D) for systems containing (a) a single C atom or a single C atom and a crystallographic
defect inside a BCC lattice of Fe atoms and a fixed defect density. (b) Results for different Ti concentrations. (c) Results as a function of the
density of dislocations. The symbols represent the results of MD simulations, while the lines are fits to Eq. (6). Large circles surround the
results that were used for fitting the model (b), (c)

the MD simulations are presented in Fig. 2(a), marked with
the label “substitutional,” together with a fit to Eq. (4). From
the fit, we extract the following values: E2 = −0.12 eV and
ε2 = 0.73 eV. The negative value of the binding energy E2

indicates that the diffusing C atom will have the tendency to
remain close to the substitutional Ti. The value of the migra-
tion energy barrier ε2 = 0.73 eV, which is slightly higher than
that of the bulk (ε1 = 0.71 eV), indicates that the presence of
Ti will cause a reduction of the diffusivity of C.

In Fig. 2(b), we test the predictive capabilities of Eq. (4)
with respect to MD simulations. We present results for sim-
ulations with varying box sizes (and hence, concentrations of
Ti atoms) and temperatures. We consider four concentrations,
namely, 0.015, 0.05, 0.23, and 0.4 at. %. The data points used
for fitting are shown surrounded by circles.

The predictions of the model match well the results from
the simulations. We note that since the size of region 2 was
chosen to be 2.5 × 2.5 × 2.5 aFe

0 , the model should not be
used to predict the behavior of smaller box sizes. Additionally,
the model was developed under the assumption that there is no
interaction between the Ti atoms, which might not be the case
for very high Ti concentrations.

Figure 3 shows a histogram of the projected positions, on
the xy plane, of the C atom during one of the simulations
performed in a periodic box of size 5 × 5 × 5 aFe

0 at a tem-
perature of 1023.15 K. The more opaque, the longer the time
the C atom has spent in a given location. The substitutional Ti
atom is located in the center of the simulation box, while the
Fe atoms are omitted for clarity.

Consistent with the calculated negative value of the binding
energy in region 2 (E2), the C atom tends to spend more time
inside that region than in the surrounding bulk. Additionally,
we note that the C atom does not seem to often visit the oc-
tahedral sites adjacent to the Ti atom, which can be explained
by the slightly higher value measured for the migration barrier
ε2. Such behavior is a consequence of the Ti-C first-neighbor
repulsion which arises due to lattice distortions caused by
Ti. Since the misfit volume caused by the presence of Ti
is positive (expansion, �V = 2.19 Å3 ), the atomic distances
adjacent to Ti will be smaller—the surrounding Fe lattice
constrains the full relaxation. Our description is confirmed by
a close examination of the simulated lattice spacing around Ti.

Measurements of the separation between atoms along the
〈100〉 directions at 0 K yield indeed that, in the close vicinity
of the Ti atom, the interatomic distances are modified. The
distance to the second-nearest-neighbor is reduced from aFe

0 =
2.864 Å [29] to 2.823 Å. And the distance to the next atoms in
the same directions increases to 2.906 Å.

A shorter distance between the Ti atom and its second-
nearest neighbors explains why the C atom is rarely found in
its vicinity: there is less space available. Similarly, the greater
distance between the second-nearest neighbors of the Ti atom
and the subsequent atoms along the 〈100〉 directions explains
why the C atom is more often found in such positions.

FIG. 3. Logarithmic histogram of the projected positions of the C
atom on the xy plane during an MD simulation in a system containing
a Ti substitutional atom. The opacity of the blue regions is related to
the time that the C atom was in a given position. The black square
centered in the Ti atom outlines region 2.
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FIG. 4. Orientation of one of the edge dislocations of the dipole
inside the simulation box. ξ is the dislocation line, b is the Burgers
vector, and c the conjugate direction.

In the last test case, we evaluate the robustness of the model
to predict C diffusion as a function of dislocation density.
Once again, we divide the system in two regions: region 2 con-
taining the dislocation line, and region 1, surrounding region
2, containing the remaining atoms. We adopt the Cartesian co-
ordinate system, with the dislocation line along the z axis and
Burgers vector along the x axis (see Fig. 4). We define region 2
to be a square cuboid having the size of the activation distance
along x and y, and the size of the simulation box along z.
The activation distance has been previously calculated in the
literature to be 0.2b − 0.3b [4], where b is Burgers vector. We
use a value of 0.3b.

We make the approximation that region 1 can be repre-
sented by a bulk structure, and use the energy barrier for
migration of C calculated previously; therefore, ε1 = εEAM =
0.79 eV. For the binding energies, we again use E1 = 0 as a
reference.

To calculate the equivalent energy barrier (ε2) and binding
energy (E2) of region 2, we use a different set of data ob-
tained from MD simulations. We generate systems containing
a dipole of edge dislocations using the software available in
Ref. [36]; see Fig. 4. The box size used for the simulations
at 723 K is 84.56 × 48.74 × 7.04 Å along x, y, and z, re-
spectively, corresponding to a dislocation density of 4.8 ×
1016 m−2. Results of diffusivity calculations on these systems,
together with a fit to Eq. (4), are presented in Fig. 2(a), marked
with the label “Dislocation.”

From the fit, we extract an equivalent energy barrier (ε2) =
0.63 eV and binding energy (E2) = −0.60 eV of region 2. The
value of the energy barrier is lower than that in the bulk,
indicating that it is easier for a C atom to migrate when it is
located in region 2—close or within the dislocation core. The
binding energy is negative, which means that the dislocation
acts as a trap for the C atom.

We proceed to test its predictive capabilities in terms
of changes of the dislocation density and temperature. We
construct a set of systems of different sizes containing a
dislocation dipole. Since the dislocation line direction (z) is
periodic, we only modify the other two dimensions. Changing
the size of the system while maintaining a single dipole is
equivalent to varying the dislocation density—we use 3.7 ×
1015, 9.0 × 1015, 1.8 × 1016, and 4.8 × 1016 m−2. Results of
the MD simulations at various temperatures together with
the predictions of the model are presented in Fig. 2(c). The
data points used for fitting are shown surrounded by circles.
The model is able to accurately describe the behavior of C

FIG. 5. Position of the C atom projected on the xz plane during
a simulation in a system containing a dislocation dipole. Larger dots
indicate (approximately) when that carbon atom is jointly diffusing
with the dislocation. The color bar indicates the simulation time, the
units being [ns].

on systems containing dislocations at different dislocations
densities and temperatures.

In Fig. 5, we show the diffusive trajectory of the C atom
projected on the xz plane, the glide plane of the dislocation,
for one of the simulations run at 923 K. Even though the
periodic simulation box has a size of 7.04 Å along z, we show
the unwrapped coordinates to have a better insight into the
trajectory of the C atom.

The simulation starts with the C atom at the coordinate
(x, z) = (0, 0). Initially, the C atom is located in the bulk of
the material, where it diffuses between octahedral sites for the
first ≈20 ns. It is then attracted by one of the dislocations of
the dipole and remains near its core for about 120 ns. During
the final 60 ns of the simulation, the C atom diffuses again
freely in the bulk.

During the time the C atom is near the core of the dislo-
cation, it does not remain static; neither does it diffuse along
the dislocation line. It diffuses together with the dislocation,
in a combined motion, along the well-defined [111] direction
(see larger dots in Fig. 5), the so-called conjugate direction.
We confirm the conjugate channelling effect first presented in
Ref. [12], where the migration of interstitials is accelerated in
a conjugate diffusion direction and not along the dislocation
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line. A video showing the diffusion of a C atom along with a
dislocation can be found in the Supplemental Material.

We have presented an approach for the calculation of in-
terstitial diffusivity in Fe in the presence of point and line
defects. The scheme couples classical molecular dynamics to
a simple analytical theory. By validating the theory against our
computer experiments, we are able to claim that after fitting a
few disposable parameters, analytical results are immediately
obtained for diffusion in the presence of any number of defects
in any concentration.

We have demonstrated our method for the case of C dif-
fusion in Fe in the presence of dissolved titanium and the
presence of different densities of edge dislocations. We find
that C is trapped in the vicinity of the Ti atom as a result of
small changes in equilibrium bond length caused by the point
defect. In this way, C diffusivity is predicted to be attenuated
by dissolved Ti.

Diffusion of C near an edge dislocation leads to a cooper-
ative migration of both defects. The result is that a conjugate
migration direction is introduced which depends on the line
sense of the dislocation, see Fig. 4. At the heart of this phe-
nomenon is the reduction in kink formation energy mediated
by C binding near the dislocation core.

We expect this method to have wide-ranging applications
in the future, in cases of diffusion of C, hydrogen, nitrogen,
and boron in multicomponent alloys with nontrivial disloca-
tion microstructures.
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