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Satisfactory theoretical treatment of double twin growth has thus far not been achieved. Phenomenological
theories of double twinning are based on the assumption that a double twin embryo grows on an invariant plane
of the double twin transformation by means of a simple shear mechanism. We demonstrate the equivalence
of A. G. Crocker’s approach, which aims to identify the double twin invariant planes, and of later models of
nonclassical twinning, which entail the use of correspondence matrices. These treatments, however, do not
account for features of double twin growth observed in experiment, namely that this is a two-step process,
where a primary twin forms fully before secondary twinning occurs internally. To resolve this conundrum, we
introduce topological models of double twinning, which focus on the motion of twinning disconnections as the
actors of twin growth. We first treat the case of secondary twinning disconnections interacting with a primary
twin interface and calculate the magnitude of the resulting rotation of the habit plane; secondly, we model
the interaction of secondary twinning disconnections with an array of primary twinning disconnections in the
primary twin interface. We show that the latter model produces similar predictions for the double twin habit plane
as those of the phenomenological theories, and we discuss validation of the topological models by experiment.
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I. INTRODUCTION

Double twinning is defined as the internal, or secondary,
twinning of a primary twin. In hcp metals, double twinning
most often involves primary (compression) twinning on the
{101̄1} or {101̄3̄} planes and secondary (tension) twinning on
the {101̄2} plane. This sequence, labeled compression-tension
(C-T) double twinning, is the most commonly observed [1–3],
but the opposite sequence, i.e., tension-compression (T-C)
double twinning has also been reported [4,5]. The importance
of double twinning as a deformation mode in magnesium is
apparent, in particular with regards to its role in the formation
of so-called “rare-earth texture” in magnesium alloys [6,7];
however, a comprehensive theoretical treatment of double
twin growth and double twin interfaces has so far eluded the
literature. Thus in this study we focus on theoretical models
of double twinning in magnesium, with axial ratio γ = 1.624.
Early so-called phenomenological theories of double twinning
postulate that double twin transformations are described by
equivalent simple shear modes, thus making double twinning
a special case of nonclassical twinning. In contrast, topo-
logical models of double twinning focus on the interplay of
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dislocations that accomplish the primary and secondary twin
transformations, i.e., twinning disconnections. After introduc-
ing the classification of double twin variants in Sec. II, in
Secs. III and IV we present the phenomenological and topo-
logical models of double twinning, respectively. We compare
and contrast the two models in Sec. V A, and discuss experi-
mental observations of double twins in Sec. V B.

II. DOUBLE TWIN CLASSIFICATION

A given twinning mechanism is conventionally defined by
specifying the twinning elements: these are K1 (the invariant
plane), η1 (the shear direction), K2 (the second undistorted
but rotated plane), η2 (the conjugate shear direction), and
the plane of shear P. This characterization is, however, not
unique, depending on the symmetry of the crystal: in the
case of hcp crystals such as magnesium, each twin can be
described equivalently by six sets of twinning elements. Thus,
when two twinning mechanisms are combined in a double
twin, 36 variants arise, conventionally named double twin
types. For the double twinning sequences under consideration,
only four variants are geometrically distinct, i.e., they produce
reorientations of the basal pole by different angles. Formally,
these are represented by the misorientation relations, that is
by the operation required to bring the coordinate systems of
the parent and double twin into coincidence, Mtot = OfO−1

i ,
where Oi and Of represent the initial and final orientations
[2,3]. For a double twin, the initial orientation is taken to be
the matrix and Oi = I, while the final orientation is given by
applying the successive operations ascribed to each twinning
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event; these can be described as rotations of 180◦ about the
η1 direction of each component twinning mode, expressed in
their own coordinate systems, and are termed RA and RB.
Hence, the total transformation, given in the coordinate sys-
tem of the matrix, is

MAB = RARBR−1
A RA = RARB. (1)

Thus the operation characterizing the double twin is ob-
tained as a rotation matrix, from which the axis and angle
of rotation can be extracted. Since the representation of such
a rotation matrix is not unique due to symmetry, all equiva-
lent descriptions of MAB are first obtained as the operations
MABDi, where Di is the set of proper symmetry operations
of the crystal, and then the representation yielding the lowest
rotation angle is chosen.

Out of the four geometrically distinct double twin variants
available for each double twinning sequence examined here,
we confine our discussion to those whose component twin-
ning mechanisms present a common plane of shear, so-called
types 1 and 2, in which case the misorientation relations can
be represented as rotations about the normal to the plane
of shear, i.e., [12̄10]. Axis/angle pairs for the C-T double
twins in magnesium (axial ratio γ = 1.624) are the following:
(101̄1) − (101̄2) type 1: −37.5◦[12̄10]; (101̄1) − (1̄012) type
2: −30.1◦[12̄10]; (101̄3̄) − (1̄012) type 1: −22.3◦[12̄10];
(101̄3̄) − (101̄2) type 2: −29.7◦[12̄10]. It is easily shown
that the misorientation relations for the opposite twinning
sequences, i.e., T-C double twins, can be represented as ro-
tations of the same magnitude as that of the corresponding
C-T mechanism, but in the opposite direction.

III. PHENOMENOLOGICAL THEORIES

Historically, classical deformation twins have been de-
fined as those twins whose growth occurs via a simple shear
mechanism on an invariant plane, producing a lattice whose
orientation relative to the parent lattice is described by the
classical orientation relations [8,9]. The notion of simple shear
is retained in subsequent phenomenological theories of non-
classical twinning, of which double twinning is described as
a subclass, while discarding the requirement that only the
classical orientation relations be obtained.

A. Crocker’s theory of double twinning

The first theory of double twinning in a hcp metal was
proposed by Crocker in 1962 [10], and its main postulate
is that double twinning, as the combination of two simple
shears, should also be represented by a simple shear. Then this
treatment involves the identification of a plane left invariant
by the two simple shears that characterize the primary and

secondary twinning modes, thus predicting the existence of a
simple equivalent twinning mode describing the double twin
transformation. In order to obtain a simple shear from the
combination of two simple shears of the nondegenerate kind,
where neither the K1 planes or the η1 directions of the two
shears coincide, an additional rotation is to be allowed. In this
way, any plane that has not been distorted by the action of the
two simple shears may be rotated back to its original position,
thus constituting an invariant plane. A further requirement
that the shape change be homogeneous implies that the two
component shears be coplanar, i.e., that the two twinning
modes have the same plane of shear, and that both modes
be compound. Hence our focus on type 1 and 2 double twin
variants.

The matrix equation for a simple twinning shear S of
magnitude s, occurring on a plane with unit normal m in the
direction represented by the unit vector � is given by

S = I + s�mT. (2)

We assign the subscripts A and B to the twinning elements of
the primary and secondary twinning modes respectively. We
choose the coordinate system where the z axis is the normal
to the plane of shear, while the x and y axes are respectively
the shear direction η1A and the normal to the K1 plane of the
primary twin. Since the plane of shear is common to the two
twinning modes, we can omit the third index of each vector,
and we write down the shears as two-dimensional matrices,

SA =
(

1 sA

0 1

)
, (3)

SB =
(

1 − sB sin α cos α sB cos2 α

−sB sin2 α 1 + sB sin α cos α

)
. (4)

Here, sA and sB are the twinning shears of the primary and
secondary twin, respectively, and α is the angle between the
primary and secondary K1 planes. Finding the undistorted
planes of the equivalent twinning mode amounts to finding
vectors left undistorted by SBSA: such a vector, labeled r,
has its length unchanged by the transformation, such that the
resulting vector q = SBSAr satisfies

qTq = rT ST
A ST

B SBSAr = rTr. (5)

Although the length of r is unaltered by the shears, its di-
rection will change; therefore, a rotation RC is added to the
transformation in order to restore q to the initial position, such
that the total deformation is given by

SC = RCSBSA. (6)

Taking r = [cos φ, sin φ] to make an angle φ with the x
axis, i.e., with the primary K1 plane, Eq. (5) can be solved for
φ, such that two solutions are obtained,

cot φ = [sB(cos α − sA sin α) − D] ±
√

sAsB + sAsBD sin α + D2

sB sin α
, D = sA − sB

sB sin α − 2 cos α
. (7)

Since the planes defined by φ and the normal to the plane of shear are left invariant by SC , which is itself a simple shear, they
constitute the K1 and K2 planes of the equivalent simple twinning mode corresponding to double twinning. Therefore, the double
twinning shear is given as a function of the angle ω between K1 and K2 as

G = 2 cot ω =
√

sAsB(sA sin α − 2 cos α)(sB sin α − 2 cos α) + (sA − sB)2. (8)
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Equations (7) and (8) can then be used to define a double
twinning mode. Moreover, an expression for the rotation RC

needed to make r truly invariant can be found. This is a
rotation about the normal to the common plane of shear, and
its magnitude ψ given by the angle through which r is rotated
by SBSA, such that

cos ψ = rTq = rTSBSAr

= 1 − sAsB sin φ sin α cos(φ − α)

+ 1
2 [sA sin 2φ + sB sin 2(φ − α)]. (9)

The relationship between the parent and doubly twinned crys-
tal is thus fully defined.

For the double twin mechanisms under consideration,
Crocker identifies a number of degeneracies, summarized by
his reciprocal theorem. This states that double twinning mech-
anisms whose primary twinning shears are either the same or
reciprocal to one another, with the same applying to the sec-
ondary twinning shears, belong to the same equivalent simple
twinning mode. The reciprocal of the (101̄1) twinning mode
is (101̄3̄), and that of the (101̄2) twinning mode is (1̄012).
Thus C-T type 1 and 2 double twin variants belong to the
same equivalent simple twinning mode; T-C (101̄2) − (101̄1)
type 1 and (101̄2) − (101̄3̄) type 2 variants result in the same
mode, as do (1̄012) − (101̄1) type 2 and (1̄012) − (101̄3̄)
type 1 variants.

The implications of the reciprocal theorem may be il-
lustrated by taking the C-T mechanisms as an example.
According to the convention used by Crocker, a positive
twinning shear moves the positive side of the K1 plane to
the right; then a reflection of a shear in any plane changes
its direction, and hence the sign of the shear. Thus for
the (101̄1) − (101̄2) mechanism, with γ = 1.624 and � =
γ
√

2/3, sA =
√

2(2�2−3)
4�

= 0.138, sB = 2−�2√
2�

= 0.129 and

α = tan−1 −3�√
2(3+3�2 )

. Then, Eq. (7) yields two solutions, φ1 =
−8.9◦ and φ2 = 88.5◦, while from Eq. (8) we find that the
double twinning shear is G = 0.258. If the secondary twin-
ning plane is substituted with its reciprocal, i.e., if we consider

(101̄1) − (1̄012) type 2, then sA = −
√

2(2�2−3)
4�

, sB = − 2−�2√
2�

and α = tan−1 −3�√
2(3+3�2 )

− cot−1 sB
2 yield the same φ1, φ2

and G. Turning to (101̄3̄) − (101̄2), the parameters are sA =
−

√
2(2�2−3)

4�
, sB = 2−�2√

2�
and α = tan−1 −3�√

2(3+3�2 )
− cot−1 sA

2 ,
producing φ3 = −5.5◦, φ4 = 77.2◦ and G = 0.258. φ3 and φ4

are now the angles between the invariant planes and (101̄3̄),
whereas φ1 and φ2 are measured relative to (101̄1). Making
allowance for this, it is seen that φ1 and φ4 define the same
plane C1, while φ2 and φ3 both define C2. This corresponds
to full verification of the reciprocal theorem. We thus assign
the invariant plane defined by φ1 to the (101̄1) − (101̄2)
mechanism, and φ3 to (101̄3̄) − (101̄2). The planes C1 and
C2 can both be seen as K1 or K2 planes of the double twin
transformation, such that the equivalent simple twinning mode
is really two modes reciprocal to each other.

The features of the mode describing compression-
tension double twinning are summarized in Table I. Here,

TABLE I. Features of the equivalent simple twinning mode de-
scribing double twinning in magnesium, γ = 1.624. The angles φ

and ψ are calculated using Eqs. (7) and (9), respectively, and they
represent rotations about the normal to the (12̄10) plane of shear.

C-T DT (101̄1) − (101̄2) (101̄1) − (1̄012)
type 1 type 2

φ −8.9◦ −8.9◦

Label C1 C1

K1 (1.07, 0, −1.07, 0.70) (1.07, 0, −1.07, 0.70)
≈ (303̄2) ≈ (303̄2)

η1 [0.37, 0,−0.37, −1.14] [0.37, 0, −0.37, −1.14]
≈ [1̄013] ≈ [1̄013]

ψ 0.4◦ −7.0◦

Mis.
relation −37.1◦[12̄10] −37.1◦[12̄10]

C-T DT (101̄3̄) − (101̄2) (101̄3̄) − (1̄012)
type 2 type 1

φ −5.5◦ −5.5◦

Label C2 C2

K1 (0.84, 0,−0.84, −3.17) (0.84, 0, −0.84, −3.17)
≈ (1̄014) ≈ (1̄014)

η1 [−1.69, 0, 1.69, −0.90] [−1.69, 0, 1.69, −0.90]
≈ [2̄021̄] ≈ [2̄021̄]

φ 7.3◦ −0.1◦

Mis.
relation −22.4◦[12̄10] −22.4◦[12̄10]

T-C DT (101̄2) − (101̄1) (1̄012) − (101̄1)
type 1 type 2

φ 9.5◦ 5.8◦

Label C3 C4

K1 (0.81, 0,−0.81, 2.28) (1.10, 0, −1.10, −1.80)
≈ (505̄14) ≈ (303̄4̄)

η1 [1.22, 0,−1.22, −0.86] [−0.96, 0, 0.96, −1.18]
≈ [303̄2̄] ≈ [5̄056̄]

ψ −0.4◦ −7.7◦

Mis.
relation 37.1◦[12̄10] 22.4◦[12̄10]

T-C DT (101̄2) − (101̄3̄) (1̄012) − (101̄3̄)
type 2 type 1

φ 9.5◦ 5.8◦

Label C3 C4

K1 (0.81, 0,−0.81, 2.28) (1.10, 0, −1.10, −1.80)
≈ (505̄14) ≈ (303̄4̄)

η1 [1.22, 0,−1.22, −0.86] [−0.96, 0, 0.96, −1.18]
≈ [303̄2̄] ≈ [5̄056̄]

ψ 7.4◦ 0.1◦

Mis.
relation 37.1◦[12̄10] 22.4◦[12̄10]

Miller-Bravais indices for the habit planes C1 and C2 are
calculated, as well as the corresponding shear directions. For
each choice of habit, the other C plane corresponds to the
K2 plane of the transformation, with the corresponding shear
direction becoming η2.
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In Table I, the angle ψ indicating the magnitude of the
rotation that is imposed on the doubly twinned crystal to
ensure that the habit planes are truly invariant is calculated
for each twinning mechanism using Eq. (9). In the “Mis.
relation” rows of the table, these angles are then added to
those defining the misorientation relation between the basal
plane of the parent crystal and that of the double twins, re-
ported in Sec. II. It is noted that mechanisms with the same
habit plane, i.e., those defined as types 1 and 2, present the
same misorientation relations after the rotation RC is applied.
Therefore, these mechanisms are indistinguishable from each
other in Crocker’s theory, and only one type of double twin
with rational plane of shear exists for each primary K1 plane
chosen. In other words, both for the case of the type 1 and type
2 double twin, a small nucleus of the primary twin retwins
internally, and although this happens on different planes, the
double twin embryo then expands into the parent on the habit
plane C1 or C2; in addition, a rotation, which may be accom-
modated either in the parent or in the double twin, or shared
between the two crystals, causes the relative orientation of the
matrix and the double twin to be the same for both types.
While the misorientation relations for the type 1 mechanisms
are effectively unchanged by the added rotation, the type 2
double twins are reoriented by a more sizable amount: this
result implies that only the misorientations of the type 1 mech-
anisms should be observed experimentally in double twins of
a noticeable size. Moreover, Table I shows that ψ is larger
for the type 2 mechanisms by an order of magnitude with
respect to the type 1 mechanisms; this would then suggest
that type 2 double twinning mechanisms for this equivalent
twinning mode are less likely to occur, as they require more
accommodation.

The case of T-C double twins may similarly be studied.
The plane C3 is found to be the invariant plane for the
(101̄2) − (101̄1) type 1 and (101̄2) − (101̄3̄) type 2 mech-
anisms, while C4 is the invariant plane of (1̄012) − (101̄1)
type 2 and (1̄012) − (101̄3̄) type 1 variants, with G = 0.258 in
both cases. Notably, the simple equivalent twinning mode for
T-C double twinning is closely related to that of C-T double
twinning: indeed, C3 may be obtained by referring C1 to the
coordinate system of the (101̄1) − (101̄2) double twin. This
is because C1 is not a mirror plane of the bicrystal formed
by the matrix and double twin (as is the case for classical
twinning), and thus can be referred to using two sets of indices
depending on which basis is chosen. This is similarly the
case for C2 and C4. The angles φ, as well as the indices of
the invariant planes and the corresponding shear directions
are also summarized in Table I, along with the angles ψ

rotated by the additional rotation RC necessary to restore the
invariant plane to its initial position and the corresponding
modified misorientation relations between parent and doubly
twinned crystals. It can be seen that these misorientation rela-
tions mirror the ones obtained for the C-T mechanisms, with
one notable difference: the (1̄012) − (101̄1) type 2 mecha-
nism shares its habit plane and misorientation relation with
(1̄012) − (101̄3̄) type 1, as they have the same primary twin;
on the other hand, (101̄1) − (1̄012) type 2 has the same habit
and misorientation as (101̄1) − (101̄2) type 1. It follows that
(1̄012) − (101̄1) type 2 and (101̄1) − (1̄012) type 2 no longer
have the same misorientation relation, and the same is true for

(101̄2) − (101̄3̄) type 2 and (101̄3̄) − (101̄2) type 2. This is
a consequence of the reciprocal theorem, because the mech-
anisms that share a habit plane are the ones with the same
primary twinning mode and secondary twinning modes recip-
rocal of each other. Nonetheless, it is confirmed that while T-C
double twins present habit planes distinct from those of C-T
double twins, their misorientation relations differ only in the
direction of rotation. Therefore, Crocker’s theory of double
twinning predicts that only two misorientation relations may
be measured in double twins with a common, rational plane
of shear: 37.1◦ and 22.4◦〈12̄10〉.

B. Nonclassical twinning

Crocker’s theory of double twinning focused on identifying
an invariant habit plane on which the double twinning shear
would occur, so that a double twin nucleus would grow on this
plane. Bevis and Crocker [11,12] generalized this concept to
include all nonclassical twinning modes, i.e., modes charac-
terized by a simple shear that restores the lattice in a different
orientation, without requiring that one of the standard misori-
entation relations of classical twinning be produced. Rather
than focusing on the invariant plane of the transformation,
Bevis and Crocker instead show that it is possible to char-
acterize a nonclassical twinning mode solely by knowing its
correspondence matrix. We recast the derivation, given by the
original authors in tensor notation, in matrix form. This is also
done by Christian and Mahajan [13], but care should be taken
with a few mistakes that have persisted in the latest edition of
Christian’s book [14], and which are here rectified.

We start with a lattice defined by a direct basis ai,
i = 1, 2, 3; then, the reciprocal basis a∗

i is related to the direct
basis by the metric Gi j = ai · a j , G−1

i j = a∗
i · a∗

j . A simple
shear of magnitude s on the plane of unit normal m = m∗

i a∗
i

in the direction of the unit vector � = 	iai is given by Eq. (2);
repeated indices are summed over according to the Einstein
summation convention. Then mTG−1m = 1 and �TG� = 1.
By applying this shear to a lattice vector x, we obtain the
vector y,

y = Sx. (10)

But according to the definition of simple shear, S must restore
the original lattice in a new orientation, such that

y = Lz, (11)

where L is a rotation and the lattice vector z is related to the
original lattice vector x by

z = Cx. (12)

The matrix C is called the correspondence matrix, and it
follows from Eqs. (10)–(12) that

S = LC. (13)

It can be shown that the matrix C is unimodular, i.e., that
|C| = ±1 [13,15]. Multiplying both sides of Eq. (13) from the
left by STG and using the identity LTGL = G [16], we find

STGS = CTGC. (14)
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We now seek to restrict the shears S to those that satisfy
Eq. 14. Substituting (2) into (14), we find

s2mmT + s(G�mT + m�TG + I) + G − CTGC = X = 0,

(15)

where the matrix X has been defined for later use. Multiplying
by G−1 from the right and taking the trace, and remembering
that the trace of a matrix product is invariant under cyclic
permutations, we find a condition for the magnitude of the
shear s,

s2 = Tr(CTGCG−1) − 3. (16)

Using Eq. (15), the normal to the K1 plane m and the shear
direction � can also be specified. We form the expression

2m∗
αm∗

βXαβ − m∗2
β Xαα − m∗2

α Xββ, (17)

where the summation convention is suspended for Greek
indices, and equate it to zero; upon defining Y = G − CTGC,
we obtain three quadratic equations for the indices of m,

Yααm∗2
β − 2Yαβm∗

αm∗
β + Yββm∗2

α = 0. (18)

Then Eq. (18) can be solved for the ratios m∗
α/m∗

β . In general,
two solutions will be found for the invariant plane: these
represent the K1 and K2 planes of the transformation.

Once m and s have been determined using Eqs. (18) and
(16), the indices of � may be found by solving Xαα = 0,
which follows from X = 0, Eq. (15). On the other hand, equa-
tions similar to (18) can be found for �. We start by inverting
Eq. (14),

S−1G−1S−T = C−1G−1C−T. (19)

Using S−1 = I − s�mT, we find

s2��T − s(G−1m�T + �mTG−1)

+ G−1 − C−1G−1C−T = W = 0, (20)

where W has been defined. Multiplying from the right by G−1

and taking the trace, another expression is obtained for s2,

s2 = Tr(C−1G−1C−TG) − 3. (21)

Comparing Eqs. (16) and (21), we find that the correspon-
dence matrix has to obey the condition

Tr(CTGCG−1) = Tr(C−1G−1C−TG). (22)

This condition is reported incorrectly in Christian and Maha-
jan [13] and Christian’s Theory of transformations in metals
and alloys, third edition [14]: In both cases, the right-hand
side of Eq. (22) reads Tr(C−TG−1C−1G), which is incorrect
as the trace of a matrix product is only invariant under cyclic
permutations. By forming an expression for W and � similar
to (17) and defining Z = G−1 − C−1G−1C−T, we find three
simultaneous equations for the indices of �,

Zαα	2
β − 2Zαβ	α	β + Zββ	2

α = 0, (23)

similarly to Eq. (18). It should be noted that as a consequence
of the above mentioned error appearing in Christian’s book,
the matrix Z is also defined incorrectly in that instance.

It has thus been proven that knowledge of the correspon-
dence matrix is sufficient to fully specify a twinning mode.
Moreover, Bevis and Crocker show that the correspondence’s

inverse, transpose, and transposed inverse, i.e., C−1, CT, and
C−T, also represent independent twinning modes, although
closely related to one another.

From the treatment above it is now evident that double
twinning as envisaged by Crocker in the form of an equivalent
simple twinning shear is a special case of nonclassical twin-
ning; this connection was formally made by Acton et al. [17].
We may write the primary shear SA in Eq. (6) as SA = LACA.
On the other hand, SB is referred to the coordinate system of
the parent crystal, rather than that of the primary twin where it
actually occurs, such that its form is more complicated. Then,
if we label the basis of the primary twin P, we see that SB

and PSB, i.e., the form it takes when referred to the basis B,
are related by the similarity transformation SB = LA

PSBL−1
A ,

where PSB = PLB
PCB. Then, Eq. (6) becomes

SC = LCCC, (24)

LC = RCLALB, (25)

CC = PCBCA. (26)

Equation (24) is now in the same form as (13), and thus
CC characterizes the equivalent simple twinning shear arising
from the combination of two twinning modes: All proper-
ties of the double twinning mode can then be derived using
this correspondence matrix, which in turn is specified by the
correspondence matrices of the component twinning modes.
Additionally, the misorientation relations derived using this
method will naturally include the additional rotation RC nec-
essary to restore the habit plane to its initial position and
thus make it truly invariant. This formulation also provides
the explicit proof of Crocker’s reciprocal theorem, as classi-
cal twinning shears reciprocal to one another have the same
correspondence matrix; then the correspondence matrix that
characterizes the double twinning shear is left unchanged if
either of the component modes used is exchanged for its
reciprocal.

By restricting the magnitude of the twinning shear, Bevis
and Crocker derived all the unitary correspondence matrices
that are able to describe a valid relationship between lattice
vectors of the parent and twinned crystals. For each of these
matrices, by changing the positions and signs of the rows
and columns of the matrix further unimodular matrices may
be obtained; in the case of cubic crystals studied by Bevis
and Crocker these variants of the correspondence matrix all
describe the same unit cell, as a consequence of symmetry.
However, for hexagonal crystals such as magnesium, each
correspondence matrix has 36 crystallographically distinct
variants. Thus, any of these variants may in principle describe
an independent twinning mode.

Applying the theory described above to hcp crystals, we
first see that the metric for the three-dimensional hexagonal
system is given by

G =
⎛
⎝ 1 − 1

2 0
− 1

2 1 0
0 0 γ 2

⎞
⎠a2, (27)

where a is the lattice constant. The 36 variants of the corre-
spondence matrices that are distinct for the hexagonal system
are found for each matrix C listed by Bevis and Crocker [11]
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in their Table II, as well as for C−1, CT, and C−T. The matrices
thus obtained are substituted into Eq. (22) and matrices that do
not satisfy this equation are discarded. Solutions for m and �

are then found using Eqs. (18) and (11) respectively; pairs of
solutions that satisfy mT� = 0 are retained. The correspond-
ing K2 plane and η2 direction may be found for each K1 − η1

pair. This is done by first obtaining the contravariant normal

to the plane of shear pi as the cross product of m and �, both
referred to the reciprocal lattice; in component form, this is
written as

pi = ε∗
i jk l∗

j m∗
k = ε∗

i jk lrGr jm
∗
k , (28)

where ε∗
i jk is the Levi-Civita tensor referred to the recip-

rocal basis, and repeated indices are summed over. In a
nonorthonormal 3D coordinate system, this is given by

εi jk =

⎧⎪⎨
⎪⎩

0, if i = j or j = k or i = k,√|Gi j |, if (i jk) is a cyclic permutation of (123),

−√|Gi j |, if (i jk) is an anticyclic permutation of (123),

(29)

where |Gi j | is the determinant of G; the same is valid for ε∗
i jk ,

provided that |Gi j | is substituted with |(G−1)i j | [9]. The Miller
indices of the plane of shear are then given by p∗

i = Gi j p j . A
rotation of the vector normal to K1, referred to real space, by
π/2 − cot s/2 about p produces a vector g = giai parallel to
the conjugate shear direction η2. The normal w to the conju-
gate twinning plane K2 is finally given by the cross product of
p and g, both referred to the direct lattice; similarly to Eq. (28),

w∗
i = εi jkg j pk . (30)

The solutions obtained for w∗
i and gi are substituted into

Eqs. (18) and (11) respectively, to check that a reciprocal
mode of shear on the K2 plane in the η2 direction exists
with the same magnitude of shear s; if this is not the case,
the relative correspondence matrix C is discarded as one not
producing a conventional twinning mode, i.e., we require that
the nonclassical twinning modes obey the theory of recipro-
cal twinning, which, albeit being proven only for classical

TABLE II. Angles rotated through by the primary twin interface
due to the impingement of a secondary twinning disconnection, for
C-T and T-C double twin mechanisms. The rotation axis is the nor-
mal to the plane of shear (12̄10). The results are given for γ = 1.624.

C-T DT (101̄1) − (101̄2) (101̄1) − (1̄012)
type 1 type 2

φ −0.7◦ 6.6◦

α −18.8◦ 74.9◦

C-T DT (101̄3̄) − (101̄2) (101̄3̄) − (1̄012)
type 2 type 1

φ −7.1◦ 0.3◦

α 75.2◦ −11.1◦

T-C DT (101̄2) − (101̄1) (1̄012) − (101̄1)
type 1 type 2

φ 0.8◦ 7.6◦

α 18.8◦ −74.9◦

T-C DT (101̄2) − (101̄3̄) (1̄012) − (101̄3̄)
type 2 type 1

φ −7.1◦ −0.3◦

α −75.2◦ 11.1◦

twinning orientation relations, is generally assumed to hold
for any twinning mode [18,19].

In this way, first of all we find the classical twinning modes,
which for magnesium, γ = 1.624, are the component modes
of double twinning, i.e., {101̄1} and {101̄2} twinning. These
modes are described respectively by variants of the matrices
4.20 and 2.19 in Table II of Bevis and Crocker, i.e.,

C4.20 = 1

4

⎛
⎝ 2 6 3

2 2̄ 1
0 0 4̄

⎞
⎠, (31)

C2.19 = 1

2

⎛
⎝ 0 1 0

4 0 0
2 1 2̄

⎞
⎠. (32)

These correspondences predict correctly all the twinning
elements K1K2η1η2; s; these are obtained as planes and di-
rections expressed in the three-dimensional hexagonal basis,
and when converted to the four-dimensional Miller-Bravais
system they are given by

CT
4.20 : {101̄1} {101̄3̄} 〈101̄2̄〉 〈303̄2〉;

√
2(2�2 − 3)

4�
, (33)

C2.19 : {101̄2} {101̄2̄} 〈101̄1̄〉 〈101̄1〉; �2 − 2√
2�

. (34)

Now, according to the method by Acton et al. [17] de-
tailed above, the correspondence matrices describing double
twinning may be found using Eq. (26), as the products
of the correspondence matrices of the component twinning
modes. Both compression-tension and tension-compression
double twinning can be described in this way, and
we obtain

(101̄1) − (101̄2) DT : CC−T = C2.19CT
4.20, (35)

(101̄2) − (101̄1) DT : CT−C = CT
4.20C2.19. (36)

The connection between CC−T and CT−C can be readily es-
tablished by remembering that the correspondence matrices
in the matrix product are involutory: hence, Eq. (36) can be
written as

CT−C = CT
4.20C2.19 = C−T

4.20C−1
2.19

= (
C2.19CT

4.20

)−1 = C−1
C−T. (37)
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The inverse C−1 of a correspondence matrix C is shown by
Bevis and Crocker to define an inverse shear S−1 expressed
in the coordinate system of the sheared lattice; then we see
that Eq. (37) implies that in the coordinate system of the
lattice sheared by the compression-tension transformation,
the correspondence matrix of tension-compression twinning
defines the inverse shear that restore the lattice sites to their
original positions. This is exactly as found by Crocker [10] in
his treatment of double twinning, see Sec. III A.

As was found in Crocker’s case, however, CC−T and C−1
C−T

define independent twinning modes when referred to the
parent lattice, producing twinning elements with different
indices. Albeit products of involutory matrices, the correspon-
dence matrices CC−T and CT−C are not equal to their inverses
(which would also make them equal to each other) and thus
describe nonclassical twinning modes. In the Miller-Bravais
coordinate system, the twinning elements K1K2η1η2; s of the
two modes are given by

CC−T : (“303̄2”) (“1̄014”) [“1̄013”] [“2̄021̄”]; 0.258, (38)

CT−C : (“505̄14”) (“303̄4̄”) [“303̄2̄”] [“5̄056̄”]; 0.258, (39)

where the indices and the shear magnitude are given for
γ = 1.624, and indices in inverted commas indicate irrational
indices approximated to the nearest integer. The K1 and K2

planes given above are the same as the habit planes predicted
by Crocker and given in Table I, and represent the habits of
modes with primary twinning mechanisms reciprocal of each
other, as per the statement of the reciprocal theorem.

Finally, the misorientation relations for the double twin-
ning modes defined by these correspondence matrices may be
obtained using Eq. (24) and solving for LC . The descriptions
of LC equivalent by symmetry are obtained via the proper
point symmetry operations of the hexagonal lattice, and the
minimum axis/angle pair is chosen. We then recover the mis-
orientation relations found by Crocker and given in Table I for
C-T and T-C double twinning respectively.

Thus, it is verified that Acton et al.’s [17] treatment of dou-
ble twinning, based on Bevis and Crocker’s [11,12] treatment
of nonclassical twinning, is entirely equivalent to Crocker’s
earlier theory, if more general. According to these theories, a
newly formed primary twin nucleus quickly retwins internally,
becoming a double twin embryo, which then grows on an
invariant habit plane of the transformation via a simple shear
mechanism. Other than on the basis of the magnitude of the
equivalent simple twinning mode, the feasibility of the double
twin transformation is evaluated based on the magnitude and
complexity of the lattice shuffles associated with it. Indeed,
in the simple equivalent twinning modes found above for C-T
and T-C double twinning in magnesium only one-eighth of the
lattice points are sheared directly into position, and the rest
must shuffle to restore the original lattice in a new orientation;
additional atomic shuffles are needed when the atomic basis is
introduced. This renders the double twinning transformation
as a simple twinning mechanism considerably less likely to
occur than either tension or compression twinning, in which
one-half and one-fourth of the lattice points are sheared to
twin positions respectively. In the following section, we see

how this problem is eliminated by treating double twinning
using the topological theory.

IV. TOPOLOGICAL MODELS

The phenomenological theories of classical and nonclas-
sical twinning are based on the notion of a homogeneous
simple shear on an invariant plane, as was explained in the
previous section. The literature has shown conclusively that
the twinning transformation is produced by the motion of
twinning dislocations gliding on the K1 plane [13]; these
have been renamed twinning disconnections as they have
both dislocation and step character [20]. Crucially, this de-
formation mechanism is inhomogeneous, and Pond et al. [21]
have shown for the case of (101̄2) twinning that while the
dislocation character of the disconnection, represented by the
Burgers vector, accomplishes the shear part of the twinning
transformation, the step associated with the disconnection,
represented by the step height, is responsible for the atomic
shuffles.

The topological model of interfacial defects [22–24] may
be used to obtain the twinning disconnection associated with
a given twin mechanism. This model involves the study of
the symmetry group of a bicrystal, that is a composite of two
crystals, often called μ and λ, related by a transformation
P. The operation characterizing a given defect in a bicrystal
interface is found by combining symmetry operations of the
symmetry groups of the μ and λ crystals that do not sur-
vive the creation of the bicrystal. When translations of the
μ and λ crystal lattices are not coincident the defect that
arises is a dislocation, whose Burgers vector is given by the
difference in the translation vectors t(μ) and t(λ) expressed
in the same coordinate system, b = t(λ) − Pt(μ). Twinning
disconnections belong to this class of defect, and their Burgers
vectors are parallel to the shear direction η1. The height of
the associated step may also be found for a given K1 plane
normal n̂: the translations t(λ) and t(μ) produce steps of
height hλ = n̂ · t(λ) and hμ = n̂ · t(μ) respectively, and the
step height of the disconnection is given by the overlap step,
i.e., the smaller of the two steps [20]. However, for a twinning
disconnection, the step heights associated with t(λ) and t(μ)
are equal, such that either can be used as the step height for
the disconnection.

As mentioned in Sec. II, in the case of twinning the trans-
formation relating the parent and the twin may be represented
as a rotation of 180◦ about the η1 direction, P = R. One
can then show that the twinning disconnection associated
with (101̄2) twinning has Burgers vector b = 2−�2

2+�2 [101̄1̄],
where � = γ

√
2/3, and a step height of two (101̄2) lattice

planes [25]; for (101̄1) twinning, the Burgers vector of the
disconnection is b = 2�2−3

2�2+1 [101̄2̄], with a step height of four
(101̄1) planes [26,27], while for the reciprocal (101̄3̄) mode
the twinning disconnection burgers vector is b = 2�2−3

2�2+9 [303̄2]
and the step height is four (101̄3̄) planes. These are the twin-
ning disconnections of the twinning mechanisms that make
up the double twinning sequences of interest here, and they
are thus used as the building blocks of the topological models
presented in the following sections.
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(a) (b)

(d)(c)

FIG. 1. Schematic of a secondary twinning disconnection with Burgers vector bB and step height hB impinging on a flat primary twin
interface. The parent, primary, and secondary twin are denoted respectively by μ, λ, and ν. (a) (101̄1) − (101̄2) type 1 double twin; L is
the distance between the origin and the point where the top of the step meets the primary twin interface. (b) (101̄1) − (1̄012) type 2 double
twin; L is as in (a). (c) (101̄3̄) − (1̄012) type 1 double twin; L (in green) is the distance between the origin and the tip of the Burgers vector.
(d) (101̄3̄) − (101̄2) type 2 double twin; L (not labeled) is as in (c), in green.

A. Disconnections impinging on a flat interface

In the first topological model of double twinning, we con-
sider a fully formed primary twin with a flat commensurate
interface along the K1 plane; we then take a secondary twin-
ning disconnection to impinge on the primary twin interface.
Assuming that the movement of atoms in the interface is not
constrained by the material surrounding the twin, all the atoms
encompassed by the length of the step are sheared by an
amount corresponding to the Burgers vector of the secondary
twinning disconnection; the next secondary twinning discon-
nection would then shear atoms by twice the Burgers vector,
and so on. Thus the result is that the primary twin interface is
overall rotated about the normal to the plane of shear common
to the two twinning modes.

In order to illustrate this, we examine the case of C-T type 1
double twinning, with twinning sequence (101̄1)μ − (101̄2)λ,
where we have denoted the parent crystal by μ and the pri-
mary twin by λ. Then the primary twin interface is the (101̄1)
plane of the matrix, and the secondary twinning disconnec-
tions with Burgers vector bB and step height hB glide on the
(101̄2) plane of the primary twin. This situation is illustrated
in Fig. 1(a), where the length of the Burgers vector relative to
the step height has been exaggerated for clarity.

Seeking to calculate the angle φ rotated through by the pri-
mary twinning plane as a result of the action of the secondary
twinning disconnections, we label the angle between (101̄1)μ

and (101̄2)λ α, and L is the distance between the origin and

the top of the step. We then see that the component of bB (in
red in the figure) perpendicular to the new habit plane, whose
trace is given in green in the figure, makes up the short side
of two triangles, one with hypotenuse L and the other with
hypotenuse bB. We can then write the equality

L sin φ = bB sin(|α| − |φ|), (40)

where we have used the absolute values of the angles α and
φ to make sure that the internal angles of all the triangles we
use for trigonometric computation sum up to π . Using L =
|hB|/ sin |α|, |sB| = bB/|hB| and solving for |φ|, we find

|φ| = cot−1
( |sB| sin |α| cos |α| − 1

|sB| sin2 |α|
)
. (41)

As we have obtained the absolute value of φ, to ascertain
its sign it is necessary to consider the sign of α and the
direction of the Burgers vector bB; this can be done by ob-
serving Fig. 1(a): in this case, following the impingement
of a secondary twinning disconnection the primary twinning
plane undergoes a clockwise rotation, such that φ is to be
negative. Using Eq. (41) we obtain |φ| = 0.7◦, and following
the examination of the figure we find that the habit plane of the
primary twin undergoes a rotation of magnitude φ = −0.7◦ as
the double twin is formed.

The scenario examined above may also be considered in
Crocker’s simple shear framework. The angle φ is then that
by which the primary K1 plane is rotated by the secondary
twinning shear SB, which was defined by Eq. (4). The unit
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(a) (b)

(d)(c)

FIG. 2. Schematic of a secondary twinning disconnection with Burgers vector bB and step height hB impinging on a flat primary twin
boundary. The parent, primary, and secondary twin are denoted respectively by μ, λ, and ν. (a) (101̄2) − (101̄1) type 1 double twin; L is
the distance between the origin and the point where the top of the step meets the primary twin interface. (b) (1̄012) − (101̄1) type 2 double
twin; L is as in (a). (c) (1̄012) − (101̄3̄) type 1 double twin; L (in green) is the distance between the origin and the tip of the Burgers vector.
(d) (101̄2) − (101̄3̄) type 2 double twin; L is as in (a).

vector � lying in the primary K1 plane is rotated by the
secondary twinning shear to position SB�, and recalling that
in Crocker’s two-dimensional coordinate system the x axis is
aligned with the η1 direction of the primary twin, � = [1, 0].
Then the angle φ is given by

φ = cot−1
( sB sin α cos α − 1

sB sin2 α

)
. (42)

This is different from Eq. (41), because in this formulation we
are able to take into account the sign of α as well as that of the
twinning shear sB, such that the correct sign is computed for
φ. Indeed, Eq. (42) yields φ = −0.7◦. The same procedure
can be applied to the (101̄1) − (1̄012) type 2 mechanism,
Fig. 1(b). In this case, the predicted rotation for the habit plane
is φ = 6.6◦.

A slightly different geometry is to be used for the (101̄3̄) −
(1̄012) (type 1) and (101̄3̄) − (101̄2) (type 2) double twinning
mechanisms, due to the direction of the Burgers vector. These
instances are schematically depicted in Figs. 1(c) and 1(d),
where once again the length of the Burgers vectors relative
to the step height has been exaggerated for clarity. In this
case, our focus is the component of the Burgers vector bB

perpendicular to the primary K1 plane. Then L is the distance
between the origin and the tip of bB [i.e., the green dashed line
in Fig. 1(c)], and we can write

L sin |φ| = bB sin |α|, (43)

where now L = |hB|/ sin(|α| + |φ|); this can be seen by con-
sidering the triangle containing both φ and α in Fig. 1(c),

where the third internal angle is given by π − |α| − |φ|, such
that the angle opposite hB is |α| + |φ|. Solving Eq. (43) for
|φ|, we obtain

|φ| = cot−1
(1 − |sB| sin |α| cos |α|

|sB| sin2 |α|
)
. (44)

Thus we find that for the (101̄3̄) − (1̄012) double twin φ =
0.3◦, while for (101̄3̄) − (101̄2), φ = −7.1◦, upon examina-
tion of Figs. 1(c) and 1(d). In both cases, the angle φ is
measured relative to the (101̄3̄) plane of the matrix.

Similarly, the rotation of the primary K1 plane caused by
the impingement of a secondary twinning disconnection can
be found for the four T-C mechanisms, Fig. 2. In this case the
secondary twinning disconnections with Burgers vector bB

and step height hB are those of (101̄1) and (101̄3̄) twinning.
For the (101̄2) − (101̄1) type 1 and (101̄2) − (101̄3̄) type
2 mechanisms, Eq. (41) may be derived, while for the
(1̄012) − (101̄1) type 2 and (1̄012) − (101̄3̄) type 1 mech-
anisms Eq. (44) holds. The resulting rotation angles about
the normal to the plane of shear are given in Table II, along
with those for the C-T mechanisms. These angles represent
the maximum rotation of the double twin habit plane that can
be brought about by the secondary twinning disconnections
encountering a flat primary twin to matrix interface, since in
the development above we have assumed that the atoms in
the interface were not constrained by the matrix surrounding
the twin. In practice, however, they might be constrained,
and the final rotation may be smaller; if indeed all additional
deformation caused by the secondary twinning shear were
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(a) (b)

(d)(c)

FIG. 3. Application of the Frank-Bilby equation to twin interfaces. μ, λ, and ν denote the matrix, primary, and secondary twin respectively.
(a) Commensurate twin interface with no dislocation content crossing the interface. (b) Incommensurate interface making an angle φ with
the K1 plane. (c) Dislocation content predicted by the Frank-Bilby equation for the interface in (c) resolved into twinning disconnections
separating commensurate terraces of twin boundary. (d) Incommensurate interface between the matrix and the double twin. In (a) to (d), the
double rectangles symbolise outlines of the hcp unit cell in matrix, twin and double twin orientations.

to be accommodated in the double twin, no rotation would
be observed. Finally, the rotation might be partitioned more
or less equally between the two crystals. Hence, the values
reported in Table II are to be interpreted as limiting values.

It emerges from the results in Table II that for both the
compression-tension and tension-compression double twin-
ning sequences, the type 1 mechanisms lead to very small
rotation angles, all a fraction of a degree. In contrast, type
2 mechanisms entail larger rotations of the habit plane by an
order of magnitude; this is a consequence of the magnitude
of the angle α between the primary and secondary twinning
planes, which is larger for the type 2 mechanisms. Therefore,
the type 2 mechanisms would require more accommodation
to ensure the rotation of the habit plane, which leads us to
conclude that they would be less likely to occur.

B. Mechanistic model of interfaces containing disconnections

In the previous section, we considered a fully formed
primary twin with a flat commensurate interface, i.e., with
no dislocation content. We now remove this constraint, and
allow the primary twin interface to contain disconnections,
following the approach of Karki and coworkers [28]. We then
wish to know how this interface is modified by the arrival of
secondary twinning disconnections, as done previously.

The dislocation content of an interface may be calculated
using the Frank-Bilby equation [29,30]. If the two lattices on
either side of the interface are obtained via affine transforma-
tions W(λ) and W(μ), the dislocation content necessary to
make the lattices compatible in such a way that they would fit
together at the interface is given by

b = (W(μ)−1 − W(λ)−1)v, (45)

where v is a large vector lying in the interface, i.e., the probe
vector, and b is expressed in the coordinate system of the

reference lattice. As multiple descriptions of the operations
W(λ) and W(μ) exist, the characterization of an interface
according to its Burgers vector density is not unique, either.
A most suitable description may, however, be chosen in cases
where the motion of interfacial dislocations mediates a change
in the shape of the crystals: This is the case of twinning,
where the glide of disconnections on the K1 plane accom-
plishes the growth of the twin; then the operations W(λ) and
W(μ) may be chosen to reflect how the twinning transfor-
mation is achieved [31]. Thus we choose as a description
of the twinning transformation that of a simple shear, such
that the dislocation description arising from the Frank-Bilby
equation is that of interfacial disconnections whose task is to
accomplish said shear. It may easily be seen that when the in-
terface coincides with the K1 plane of the twin, its dislocation
content is zero, as the probe vector is left invariant by the shear
transformation, Fig. 3(a).

Next, we consider a different configuration, where the in-
terface plane is at an angle φ with the K1 plane of the primary
twin, Fig. 3(b). This interface is, in general, incoherent, and
the probe vector v, which now lies in it is no longer invari-
ant under a shear SA. Taking the reference lattice to be the
twinned lattice λ, the operation W(λ) is the identity I, and the
operation W(μ) is the one that transforms λ into μ, expressed
in the coordinate system of λ, i.e., PS−1

A = SA, where the
superscript P indicates the coordinate system of the primary
twin. Substituting S−1

A = I − sA�AmT
A, where �A and mA are

unit vectors along η1 and normal to the K1 plane respectively,
in Eq. (45), we find

Pb = (
S−1

A − I
)
v = −sA�AmT

Av = sA sin φ|v|�A. (46)

Thus the Burgers vector content of this interface is parallel to
the η1 direction, and we can envisage an array of twinning dis-
connections to make up the dislocation content. Using that for
a twinning disconnection sA = |bA|/hA, we see that |bA|�A =
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bA, i.e., the Burgers vector of the disconnection. Defining the
disconnection spacing as LA = hA/sin φ and dividing through
by |v|, we find the Burgers vector density

Pb
|v| = bA

LA
. (47)

Although this Burgers vector content is referred to the coor-
dinate system of the primary twin, it has the same indices in
the coordinate system of the parent lattice, since the Burgers
vector bA is invariant under the primary twinning shear.

Hence, this interface is formed by commensurate terraces
parallel to the primary K1 plane separated by twinning dis-
connections, Fig. 3(c), which is consistent with the model
of a lenticular twin, where loops of twinning disconnections
enlarge the twin by gliding on the K1 plane, and while doing
so ensure that the interface plane is locally macroscopically
rotated. In the case of double twinning, however, this is a
transient configuration; in fact, it is modified by the arrival
of secondary twinning disconnections as the secondary twin
grows inside the primary twin. These disconnections now
raise the possibility that the misfit introduced by the primary
twinning disconnections across the interface may be removed
[28]; by misfit, we mean the net in plane Burgers vector con-
tent of the interface. The zero-misfit condition is achieved by
interfacial dislocations when the total Burgers vector content
parallel to the interface plane is zero [32,33], such that if the
incoming secondary twinning disconnections compensate the
Burgers vector content of the primary twinning disconnec-
tions parallel to the interface, the boundary plane will be free
of misfit.

In order to achieve the zero-misfit condition, we first es-
tablish the Burgers vector content of an interface that makes
an angle φ with the primary K1 plane, but now separates the
parent and double twin, i.e., crystals μ and ν, Fig. 3(d). The
reference lattice is still λ: thus, the Frank-Bilby equation can
be written as

Pb = (
S−1

A − PS−1
B

)
v = (− sA�AmT

A + sB
P�B

PmT
B

)
v. (48)

With the aid of Fig. 3(d), we notice that PmT
Bv = cos( π

2 −
α + φ)|v| = sin(α − φ)|v|, where α is the angle between the
primary and secondary K1 planes. Then sB = |bB|/hB, such
that |bB|P�T

B = PbB. The spacing of the secondary twinning
disconnections is thus given by LB = hB/ sin(α − φ), such
that the Burgers vector density of the interface is finally

Pb
|v| = bA

LA
+

PbB

LB
. (49)

For simplicity, we now refer this Burgers vector content to the
coordinate system of the matrix, such that

b
|v| = R−1

A
Pb

|v| = bA

LA
+ bB

LB
, (50)

where RA is one of the descriptions of the transformation that
relates the matrix and primary twin, e.g., a rotation by π about
the primary η1 direction.

Now it is possible to apply the condition for zero misfit
across the interface, i.e., that the total Burgers vector content
parallel to the interface be equal to zero. This condition can
only be achieved if the component of the Burgers vector of the

secondary twinning disconnection that is parallel to the vector
v has opposite sign to the same component of the Burgers
vector of the primary twinning disconnection, i.e., if

|b‖
A|

LA
− |b‖

B|
LB

= 0, (51)

where the superscript ‖ indicates the component parallel to the
habit plane that makes an angle φ with the primary K1 plane.
These components are given by |b‖

A| = |bA| cos φ and |b‖
B| =

|bB| cos(α − φ). Then, reintroducing sA and sB to simplify the
expressions, Eq. (51) becomes

sA sin φ cos φ − sB sin(α − φ) cos(α − φ) = 0. (52)

Solving for φ, we find

φ = 1

2
tan−1

(
sB sin 2α

sA + sB cos 2α

)
. (53)

Thus, φ defines a habit plane where the spacing of the
primary and secondary twinning disconnections that make up
its dislocation content is such that misfit across the interface is
removed. We are, however, left to deal with the components of
the Burgers vectors of the disconnections that are perpendicu-
lar to the interface. The Burgers vector content perpendicular
to the plane that makes an angle φ with the primary twinning
plane is given by

b⊥

|v| = b⊥
A

LA
+ b⊥

B

LB
. (54)

The effect of this dislocation content is to cause a rotation
of the lattices relative to each other, i.e., a tilt, such that the
additional rotation contributes to the macroscopic rotation of
the interface [28,32]. According to the topological model, this
rotational distortion field is to be partitioned equally between
the two crystals in the homogeneous isotropic case [33,34];
in the case of double twinning, the crystals on either side
of the interface are in the same phase and have the same
elastic constants, but they are not isotropic, such that the equal
partitioning of the distortion field is an approximation. Hence,
if the additional tilt is given by the angle ψ , each crystal will
be rotated by ψ/2, and the final orientation of the interface
is given by φ ± ψ/2 where the sign of ψ/2 differs for the
two crystals. If the perpendicular components of the Burgers
vectors of the twinning disconnections have the same sign, the
angle ψ can be found from

tan ψ = |b⊥|
|v| = |b⊥

A |
LA

+ |b⊥
B |

LB
. (55)

For small ψ , tan ψ ≈ ψ , and we find

ψ = |b⊥|
|v| = sA sin2 φ + sB sin2(α − φ). (56)

Thus a misfit-free double twin interface is envisaged, where
the total transformation is accompanied by a rotational dis-
tortion of the two crystals. It is, however, emphasized that
as mentioned above, the condition for the misfit to be re-
moved is that the components of the Burgers vectors of the
primary and secondary twinning disconnections parallel to the
interface have opposite sign. Should the parallel components
have the same sign, the secondary twinning disconnections
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TABLE III. Angles defining misfit-free interfaces with added
rotational distortion as described by the topological model, for C-T
and T-C double twin mechanisms with γ = 1.624. φ is calculated
using Eq. (53) and ψ is calculated using Eq. (56) (where a minus
sign is introduced for the (101̄1) − (1̄012) mechanism where the tilt
components of the primary and secondary twinning disconnections
have opposite signs). The rotation axis is the normal to the plane of
shear (12̄10). Whether the misfit-free condition may be achieved for
each mechanism is marked by a yes or no in the “misfit − free” row.

C-T DT (101̄1) − (101̄2) (101̄1) − (1̄012)
type 1 type 2

φ −9.1◦ −7.3◦

ψ 0.4◦ −7.4◦

φ + ψ

2 −8.9◦ −11.0◦

misfit-free no yes

C-T DT (101̄3̄) − (101̄2) (101̄3̄) − (1̄012)
type 2 type 1

φ −7.2◦ −5.4◦

ψ 7.1◦ −0.1◦

φ + ψ

2 −3.6◦ −5.5◦

misfit-free no no

T-C DT (101̄2) − (101̄1) (1̄012) − (101̄1)
type 1 type 2

φ 9.7◦ 7.8◦

ψ −0.4◦ −7.6◦

φ + ψ

2 9.5◦ 4.0◦

misfit-free no yes

T-C DT (101̄2) − (101̄3̄) (1̄012) − (101̄3̄)
type 2 type 1

φ 7.7◦ 5.8◦

ψ 7.6◦ 0.1◦

φ + ψ

2 11.5◦ 5.8◦

misfit-free no no

will only add to the misfit introduced by the primary twinning
disconnections.

Hence, we now analyze the specific case of double twin-
ning in magnesium, to understand whether misfit compensa-
tion brought about by twinning disconnections is possible. We
envisage a lenticular primary twin based on the disconnection
model of twinning presented above, where the macroscopic
interface plane is rotated from the primary twin plane by the
angle φ. We then take a secondary twin embryo to form inside
the primary twin on a plane that makes an angle α with the pri-
mary K1 plane. For interfaces where misfit accommodation is
possible, the angle φ that the interface makes with the primary
twinning plane can be calculated using Eq. (53), and the tilt ψ

is given by Eq. (56), and the results are reported in Table III
for all the C-T and T-C double twinning mechanisms.

We now consider each of these mechanisms in detail with
the aid of Figs. 4 and 5. Starting from the (101̄1) − (101̄2)
type 1 mechanism, Fig. 4(a), we see that the components of
the Burgers vectors of the primary and secondary twinning
disconnections, bA and bB, that are parallel to the interface
making an angle φ with the primary K1 plane point in the
same direction. Thus, the secondary twinning disconnections
add to the misfit at the interface, and misfit cancellation is
not possible for this mechanism. The same holds for the
(101̄3̄) − (101̄2) type 2 and (101̄3̄) − (1̄012) type 1 twin-
ning sequences, Figs. 4(c) and 4(d). Conversely, in the case
of (101̄1) − (1̄012) type 2 double twinning, Fig. 4(b), the
components of bA and bB parallel to the interface have op-
posite sign, such that misfit cancellation may be achieved.
However, it should be noted that in this case the tilt com-
ponents of the Burgers vectors of the primary and secondary
twinning disconnections, i.e., the components perpendicular
to the interface plane, have opposite sign, such that this should
be reflected by Eq. (56), and the total tilt is given by the
difference of the magnitudes of these components. Applying
the same analysis to the T-C double twinning sequences, we
find that misfit compensation across the interface is possible

(a) (b)

(d)(c)

FIG. 4. Diagrams illustrating the possibility of misfit compensation across the double twin to matrix interface by combination of primary
and secondary twinning disconnections for the C-T mechanisms. In (a) to (d) μ, λ, and ν indicate the matrix, primary, and secondary twin,
respectively. The projection direction is [12̄10].
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(a) (b)

(d)(c)

FIG. 5. Diagrams illustrating the possibility of misfit compensation across the double twin to matrix interface by combination of primary
and secondary twinning disconnections for the T-C mechanisms. In (a) to (d) μ, λ, and ν indicate the matrix, primary, and secondary twin,
respectively. The projection direction is [12̄10].

for the (101̄2̄) − (101̄1) type 1 [Fig. 5(b)] mechanism, while
it may not be achieved for (101̄2) − (101̄1) type 2 [Fig. 5(a)],
(101̄2) − (101̄3̄) type 2 [Fig. 5(d)] and (1̄012) − (101̄3̄) type
1 [Fig. 5(c)] double twinning.

The misfit-free interfaces thus obtained for the double
twinning mechanisms where misfit compensation is possible
are immobile, because a finite diffusive flux of atoms would
be needed for the interlocked primary and secondary twinning
disconnections to move, i.e., the intersection of twinning dis-
connections is not glissile [35]. Thus the double twin cannot
grow on the habit plane defined by φ + ψ

2 , and is restricted to
the original size of the primary twin.

V. DISCUSSION

A. Comparison between the topological
and phenomenological models

An instructive comparison may be drawn between
Crocker’s model of double twinning on an invariant plane,
as well as successive models of nonclassical twinning, and
the topological models. It may be noted by comparing φ and
φ + ψ/2 respectively in Tables I and III that the phenomeno-
logical theory of simple shear on an invariant plane and the
topological model of misfit-free interfaces yield similar results
for the predicted habit planes of double twins in magnesium,
although the models start from different postulates. In the
phenomenological theories, it is assumed that a double twin
nucleus may be able to grow on a plane left invariant by the
combined shear transformations of the two twinning mecha-
nisms. On the other hand, the topological model is based on
the notion that twinning disconnections of the primary and
secondary twins will arrange themselves as to eliminate misfit
along the macroscopic double twin interface. However, the
misfit-free condition is built into the definition of an invariant
plane strain, as if an undistorted plane is picked as the inter-
face, there is no misfit across it. Thus the topological theory

models explicitly the minimization of misfit, which is instead
modelled implicitly in the phenomenological theories [28].
We have, however, seen how the premises for the achieve-
ment of a misfit-free interface by twinning disconnections
exist only for some of the double twinning mechanisms under
consideration, such that the construction of interfaces aligned
with the predicted habit planes is not always possible.

Secondly, Crocker’s theory predicts the existence of a mu-
tual rotation between the parent and doubly twinned lattices,
necessary in order to render any undistorted plane also un-
rotated and thus truly invariant. This rotation concerns the
entirety of the doubly twinned volume, and is accommodated
wholly by the parent lattice. In contrast, the topological theory
imputes a local lattice distortion to the additional component
of the interfacial Burgers vector content that is perpendicular
to the interface, which causes the interface to tilt. This rotation
is partitioned between the parent and the double twin, and
for an infinite interface, the range of the distortion field is
of the order of the spacing of the disconnections, and thus
relatively localized [28]. Hence, although the phenomenolog-
ical and topological models predict essentially the same lattice
rotation, as may be seen by comparing values of ψ in Table III
with those in Table I, this is a long-ranged distortion in the
former case, and a short-ranged one in the latter.

Finally, the main distinction between the two models is
in their treatments of the mechanisms of formation of the
double twin to matrix interface. The phenomenological theory
postulates that soon after the formation of a small primary
twin nucleus, this retwins internally, thus becoming a double
twin embryo. The double twin then expands by growing via
a simple shear mechanism on a new habit plane that is an
invariant plane of the double twin transformation. Conversely,
according to the topological model, twin growth is the re-
sult of the motion of twinning disconnections. An array of
residual primary twinning disconnections in the primary twin
boundary then interacts with incoming secondary twinning
disconnections, and the spacing in each array is adjusted such
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that misfit across the interface may be minimized. The final
interface is thus rendered immobile, and further growth of
the double twin is impeded. Hence, the topological model
requires that a sizable primary twin be formed first, sub-
sequently undergoing internal retwinning that prevents any
expansion of the doubly twinned volume. Indeed, if one con-
structs the dichromatic pattern for the double twinning modes
analyzed, it is found that there are no admissible twinning
disconnections that may be glissile on the misfit-free habit
planes predicted by the topological model, or the invariant
habit planes of Crocker’s theory. It is then clear that the two
models propose what may be referred to as one- and two-step
processes for double twin formation: the phenomenological
theory predicting that a double twin may grow on an invariant
plane in one step, and the topological model envisaging the
full formation of a primary twin followed by internal growth
of the secondary twin in two distinct steps.

B. Validation of theory by experiment

Experimental electron microscopy observations suggest
that double twins in magnesium are created in a two-step
process, with a primary twin forming first and later retwin-
ning, as primary twins that have only partially retwinned are
often reported in the literature [1,3,4,36]. This is indication
that the phenomenological theories, which point to a one-step
process, do not describe double twinning accurately. However,
unambiguous measurement of the orientation of the double
twin to matrix interface has traditionally eluded the literature,
even for the most commonly occurring (101̄1) − (101̄2) type
1 variant. The most comprehensive experimental study in this
sense was carried out by Cizek and Barnett [1], who stud-
ied a large number of double twins in a magnesium alloy
using transmission electron microscopy, and found that the
macroscopic orientation of {101̄1} − {101̄2} type 1 double
twin to matrix interfaces varied between {303̄4}, {101̄1}, and
{202̄3}. These observations thus do not support the predic-
tions of Crocker’s model summarized in Table I. Indeed, the
topological theory concludes that for this mechanism misfit
compensation brought about by the secondary twinning dis-
connections is not possible, as the components of the Burgers
vectors of the primary and secondary twinning disconnections
parallel to the double twin interface do not cancel out. There
is then no reason why the disconnections should be positioned
as to yield an overall orientation of the interface parallel to
Crocker’s invariant habit planes.

Conversely, we have shown in a previous high-resolution
TEM study [5] that double twin to matrix interfaces of the T-C
and C-T type 1 kinds often contain facets, whose character
is transformed by the action of secondary twinning discon-
nections but which remain otherwise commensurate, and that
may be modelled using the topological theory. The facets are
separated by segments of the original primary twin interface,
which appear to be still aligned with the primary K1 plane.
In Sec. IV A we used the topological theory to illustrate the
case of secondary twinning disconnections arriving at a flat
primary twin interface; it may be seen from Table II that
the ensuing rotation of the double twin habit plane for type
1 mechanisms is very small, of the order of a fraction of

a degree. This is indeed consistent with the high-resolution
observations, suggesting that the macroscopic orientation of
the double twin to matrix interface is largely predetermined
by that of the primary twin. Notably, we also showed that the
results obtained for secondary twinning disconnections may
be recovered by applying Crocker’s secondary twinning shear
to the primary η1 direction.

VI. CONCLUSIONS

In this article the phenomenological and topological the-
ories of type 1 and 2 double twinning in magnesium
were presented. The findings may thus be summarized as
follows.

(i) Phenomenological theories of nonclassical twinning,
of which double twinning is a special case, require that double
twin growth occur on an unrotated, undistorted habit plane. A
simple equivalent twinning mode is thus associated with the
double twin mechanism, and this may be found by either com-
bining the primary and secondary twinning shears (Sec. III A)
or the correspondence matrices associated with the individual
twinning modes (Sec. III B). The resulting predicted habit
planes were reported in Table I.

(ii) Two situations may be studied using the topological
model. The first one is that of secondary twinning disconnec-
tions arriving at a flat primary twin interface (Sec. IV A). This
produces a macroscopic rotation of the double twin to matrix
interface with respect to the original primary twin plane; the
magnitudes of these rotations for all double twinning mech-
anisms were reported in Table II. Secondly, the arrival of
secondary twinning disconnections at a stepped primary twin
interface may also be modelled (Sec. IV B). In this case, the
twinning disconnections adjust their spacing in the double
twin to matrix interfaces as to minimize misfit, if possible,
thus resulting in a macroscopic rotation of the interface; re-
sults were reported in Table III.

(iii) The phenomenological model yields similar pre-
dictions to the topological model of secondary twinning
disconnections minimizing misfit in a stepped primary twin
interface. This is because misfit is automatically eliminated
in the notion of an invariant habit plane, on which the
phenomenological theory is based. However, the topological
method does not require that the double twin grow as a simple
twinning mode, thus allowing for a primary twin to form first,
followed by internal retwinning, as supported by experimental
observations.

(iv) The invariant or misfit-free habit planes predicted by
both theories are not consistently observed in experimental
studies of double twins. Instead, observations of type 1 double
twins suggest that the orientation of the double twin to matrix
interface is mostly predetermined by that of the primary twin
interface, sustaining the predictions of the topological model
of secondary twinning disconnections impinging on a flat
primary twin interface.
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